Skip to main content
Log in

A Novel Nanoconjugate of Landomycin A with C60 Fullerene for Cancer Targeted Therapy: In Vitro Studies

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Landomycins are a subgroup of angucycline antibiotics that are produced by Streptomyces bacteria and possess strong antineoplastic potential. Literature data suggest that enhancement of the therapeutic activity of this drug may be achieved by means of creating specific drug delivery systems. Here we propose to adopt C60 fullerene as flexible and stable nanocarrier for landomycin delivery into tumor cells.

Methods

The methods of molecular modelling, dynamic light scattering and Fourier transform infrared spectroscopy were used to study the assembly of C60 fullerene and the anticancer drug Landomycin A (LA) in aqueous solution. Cytotoxic activity of this nanocomplex was studied in vitro towards two cancer cell lines in comparison to human mesenchymal stem cells (hMSCs) using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) test and a live/dead assay. The morphology of the cells incubated with fullerene–drug nanoparticles and their uptake into target cells were studied by scanning electron microscopy and fluorescence light microscopy.

Results

The viability of primary cells (hMSCs, as a model for healthy cells) and cancer cell lines (human osteosarcoma cells, MG-63, and mouse mammary cells, 4T1, as models for cancer cells) was studied after incubation with water-soluble C60 fullerenes, LA and the mixture C60 + LA. The C60 + LA nanocomplex in contrast to LA alone showed higher toxicity towards cancer cells and lower toxicity towards normal cells, whereas the water-soluble C60 fullerenes at the same concentration were not toxic for the cells.

Conclusions

The obtained physico-chemical data indicate a complexation between the two compounds, leading to the formation of a C60 + LA nanocomposite. It was concluded that immobilization of LA on C60 fullerene enhances selectivity of action of this anticancer drug in vitro, indicating on possibility of further preclinical studies of novel C60 + LA nanocomposites on animal tumor models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

4T1:

Mouse mammary cells

C60FAS:

C60 fullerene aqueous solution

Cis:

Cisplatin

DAPI:

4′, 6 Diamidino 2 phenylindole

DLS:

Dynamic light scattering

DMEM:

Dulbecco’s modified eagle medium

DMSO:

Dimethyl sulfoxide

Dox:

Doxorubicin

EPR:

Enhanced permeability and retention

FCS:

Fetal calf serum

FTIR:

Fourier transform infrared spectroscopy

hMSCs:

Human mesenchymal stem cells

LA:

Landomycin A

MG-63:

Human osteosarcoma cells

MTT:

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide

PBS:

Phosphate-buffered saline

PDI :

Polydispersity index

SEM:

Scanning electron microscopy

References

  1. Afanasieva, K. S., S. V. Prylutska, A. V. Lozovik, K. I. Bogutska, A. V. Sivolob, Yu. I. Prylutskyy, et al. C60 fullerene prevents genotoxic effect of doxorubicin on human lymphocytes in vitro. Ukr. Biochem. J. 87:91–98, 2015.

    Article  Google Scholar 

  2. Augustine, S., J. Singh, M. Srivastava, M. Sharma, A. Das, and B. D. Malhotra. Recent advances in carbon based nanosystems for cancer theranostics. Biomater. Sci. 5:901–952, 2017.

    Article  Google Scholar 

  3. Chaudhuri, P., A. Paraskar, S. Soni, R. A. Mashelkar, and S. Sengupta. Fullerenol cytotoxic conjugates for cancer chemotherapy. ACS Nano 3:2505–2514, 2009.

    Article  Google Scholar 

  4. Elshahawi, S. I., K. A. Shaaban, M. K. Kharel, and J. S. Thorson. A comprehensive review of glycosylated bacterial natural products. Chem. Soc. Rev. 44:7591–7697, 2015.

    Article  Google Scholar 

  5. Eswaran, S. V. Water soluble nanocarbon materials: a panacea for all? Curr. Sci. 114:1846–1850, 2018.

    Google Scholar 

  6. Evstigneev, M. P. Hetero-association of aromatic molecules in aqueous solution. Int. Rev. Phys. Chem. 33:229–273, 2014.

    Article  Google Scholar 

  7. Falk, M., M. Gil, and N. Iza. Self-association of caffeine in aqueous solution: an FTIR study. Can. J. Chem. 68:1293–1299, 1990.

    Article  Google Scholar 

  8. Foley, S., C. Crowley, M. Smaihi, C. Bonfils, B. F. Erlanger, P. Seta, et al. Cellular localisation of a water-soluble fullerene derivative. Biochem. Biophys. Res. Commun. 294:116–119, 2002.

    Article  Google Scholar 

  9. Franskevych, D., K. Palyvoda, D. Petukhov, S. Prylutska, I. Grynyuk, C. Schuetze, et al. Fullerene C60 penetration into leukemic cells and its photoinduced cytotoxic effects. Nanoscale Res. Lett. 12:40, 2017.

    Article  Google Scholar 

  10. Goodarzi, S., T. Da Ros, J. Conde, F. Sefat, and M. Mozafari. Fullerenes: biomedical engineers get to revisit an old friend. Mater. Today 20:460–480, 2017.

    Article  Google Scholar 

  11. Guo, X., R. Ding, Y. Zhang, L. Ye, X. Liu, C. Chen, et al. Dual role of photosensitizer and carrier material of fullerene in micelles for chemo–photodynamic therapy of cancer. J. Pharm. Sci. 103:3225–3234, 2014.

    Article  Google Scholar 

  12. Henkel, T., J. Rohr, J. M. Beale, and L. Schwenen. Landomycins, new angucycline antibiotics from Streptomyces sp. I. structural studies on landomycins A–D. J. Antibiot. 43:492–503, 1990.

    Article  Google Scholar 

  13. Ji, Z., H. Sun, H. Wang, Q. Xie, Y. Liu, and Z. Wang. Biodistribution and tumor uptake of C60(OH)x in mice. J. Nanopart. Res. 8:53–63, 2006.

    Article  Google Scholar 

  14. Joshi, M., P. Kumar, R. Kumar, G. Sharma, B. Singh, V. Katare, et al. Aminated carbon-based “cargo vehicles” for improved delivery of methotrexate to breast cancer cells. Mater. Sci. Eng. C 75:1376–1388, 2017.

    Article  Google Scholar 

  15. Kumari, P., B. Ghosh, and S. Biswas. Nanocarriers for cancer-targeted drug delivery. J. Drug Target. 24:179–191, 2016.

    Article  Google Scholar 

  16. Lapin, N. A., L. A. Vergara, Y. Mackeyev, J. M. Newton, S. A. Dilliard, L. J. Wilson, et al. Biotransport kinetics and intratumoral biodistribution of malonodiserinolamide-derivatized [60]fullerene in a murine model of breast adenocarcinoma. Int. J. Nanomed. 12:8289–8307, 2017.

    Article  Google Scholar 

  17. Liang, X. J., H. Meng, Y. Z. Wang, H. Y. He, J. Meng, J. Lu, et al. Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis. Proc. Natl. Acad. Sci. USA 107:7449–7454, 2010.

    Article  Google Scholar 

  18. Lu, C. Y., S. D. Yao, W. Z. Lin, W. F. Wang, N. Y. Lin, Y. P. Tong, et al. Studies on the fullerol of C60 in aqueous solution with laser photolysis and pulse radiolysis. Radiat. Phys. Chem. 53:137–143, 1998.

    Article  Google Scholar 

  19. Luzhetskyy, A., L. Zhu, M. Gibson, M. Fedoryshyn, C. Dürr, C. Hofmann, et al. Generation of novel landomycins M and O through targeted gene disruption. ChemBioChem 6:675–678, 2005.

    Article  Google Scholar 

  20. Lynchak, O. V., Yu. I. Prylutskyy, V. K. Rybalchenko, O. A. Kyzyma, D. Soloviov, V. V. Kostjukov, et al. Comparative analysis of the antineoplastic activity of C60 fullerene with 5-fluorouracil and pyrrole derivative in vivo. Nanoscale Res. Lett. 12:8, 2017.

    Article  Google Scholar 

  21. Lyon, D. Y., L. K. Adams, J. C. Falkner, and P. J. Alvarez. Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. J. Environ. Sci. Technol. 40:4360–4366, 2006.

    Article  Google Scholar 

  22. Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41:189–207, 2001.

    Article  Google Scholar 

  23. Markovic, Z., B. Todorovic-Markovic, D. Kleut, N. Nikolic, S. Vranjes-Djuric, M. Misirkic, et al. The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes. Biomaterials 28:5437–5448, 2007.

    Article  Google Scholar 

  24. Matsumura, Y., and H. Maeda. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res. 46:6387–6392, 1986.

    Google Scholar 

  25. Misra, C., N. Thotakura, R. Kumar, B. Singh, G. Sharma, O. P. Katare, et al. Improved cellular uptake, enhanced efficacy and promising pharmacokinetic profile of docetaxel employing glycine-tethered C60-fullerenes. Mater. Sci. Eng. C 76:501–508, 2017.

    Article  Google Scholar 

  26. Mitchell, M. J., R. K. Jain, and R. Langer. Engineering and physical sciences in oncology: challenges and opportunities. Nat. Rev. Cancer 17:659–675, 2017.

    Article  Google Scholar 

  27. Montellano, A., T. Da Ros, A. Bianco, and M. Prato. Fullerene C60 as a multifunctional system for drug and gene delivery. Nanoscale 3:4035–4041, 2011.

    Article  Google Scholar 

  28. Panchuk, R. R., L. V. Lehka, A. Terenzi, B. P. Matselyukh, J. Rohr, and A. K. Jha. Rapid generation of hydrogen peroxide contributes to the complex cell death induction by the angucycline antibiotic landomycin E. Free Radic. Biol. Med. 106:134–147, 2017.

    Article  Google Scholar 

  29. Prylutska, S. V., O. P. Matyshevska, I. I. Grynyuk, Y. I. Prylutskyy, U. Ritter, and P. Scharff. Biological effects of C60 fullerenes in vitro and in a model system. Mol. Cryst. Liq. Cryst. 468:265–274, 2007.

    Article  Google Scholar 

  30. Prylutska, S. V., O. P. Matyshevska, A. A. Golub, Y. I. Prylutskyy, G. P. Potebnya, U. Ritter, et al. Study of C60 fullerenes and C60-containing composites cytotoxicity in vitro. Mater. Sci. Eng. C 27:1121–1124, 2007.

    Article  Google Scholar 

  31. Prylutska, S. V., I. I. Grynyuk, S. M. Grebinyk, O. P. Matyshevska, Y. I. Prylutskyy, U. Ritter, et al. Comparative study of biological action of fullerenes C60 and carbon nanotubes in thymus cells. Mater. Wiss. Werkst. 40:238–241, 2009.

    Article  Google Scholar 

  32. Prylutska, S., I. Grynyuk, O. Matyshevska, Yu. Prylutskyy, M. Evstigneev, P. Scharff, et al. C60 fullerene as synergistic agent in tumor-inhibitory doxorubicin treatment. Drugs R&D 14:333–340, 2014.

    Article  Google Scholar 

  33. Prylutska, S., L. Skivka, G. Didenko, Yu. Prylutskyy, M. Evstigneev, G. Potebnya, et al. Complex of C60 fullerene with doxorubicin as a promising agent in antitumor therapy. Nanoscale Res. Lett. 10:499, 2015.

    Article  Google Scholar 

  34. Prylutska, S., R. Panchuk, G. Gołuński, L. Skivka, Yu. Prylutskyy, V. Hurmach, et al. C60 fullerene enhances cisplatin anticancer activity and overcomes tumor cells drug resistance. Nano Res. 10:652–671, 2017.

    Article  Google Scholar 

  35. Prylutska, S. V., S. V. Politenkova, K. S. Afanasieva, V. F. Korolovych, K. I. Bogutska, A. V. Sivolob, et al. A nanocomplex of C60 fullerene with cisplatin: design, characterization and toxicity. Beilstein J. Nanotechnol. 8:1494–1501, 2017.

    Article  Google Scholar 

  36. Prylutskyy, Yu. I., V. M. Yashchuk, K. M. Kushnir, A. A. Golub, V. A. Kudrenko, S. V. Prylutska, et al. Biophysical studies of fullerene-based composite for bio-nanotechnology. Mater. Sci. Eng. C 23:109–111, 2003.

    Article  Google Scholar 

  37. Prylutskyy, Yu. I., M. P. Evstigneev, I. S. Pashkova, D. Wyrzykowski, A. Woziwodzka, G. Gołuński, et al. Characterization of C60 fullerene complexation with antibiotic doxorubicin. Phys. Chem. Chem. Phys. 16:23164–23172, 2014.

    Article  Google Scholar 

  38. Prylutskyy, Yu. I., M. P. Evstigneev, V. V. Cherepanov, O. A. Kyzyma, L. A. Bulavin, N. A. Davidenko, et al. Structural organization of C60 fullerene, doxorubicin and their complex in physiological solution as promising antitumor agents. J. Nanopart. Res. 17:45, 2015.

    Article  Google Scholar 

  39. Prylutskyy, Yu. I., V. V. Cherepanov, M. P. Evstigneev, O. A. Kyzyma, V. I. Petrenko, V. I. Styopkin, et al. Structural self-organization of C60 and cisplatin in physiological solution. Phys. Chem. Chem. Phys. 17:26084–26092, 2015.

    Article  Google Scholar 

  40. Prylutskyy, Y. I., V. V. Cherepanov, V. V. Kostjukov, M. P. Evstigneev, O. A. Kyzyma, L. A. Bulavin, et al. Study of the complexation between Landomycin A and C60 fullerene in aqueous solution. RSC Adv. 6:81231–81236, 2016.

    Article  Google Scholar 

  41. Prylutskyy, Y., A. Bychko, V. Sokolova, S. Prylutska, M. Evstigneev, V. Rybalchenko, et al. Interaction of C60 fullerene complexed to doxorubicin with model bilipid membranes and its uptake by HeLa cells. Mater. Sci. Eng. C 59:398–403, 2016.

    Article  Google Scholar 

  42. Ritter, U., Y. I. Prylutskyy, M. P. Evstigneev, N. A. Davidenko, V. V. Cherepanov, A. I. Senenko, et al. Structural features of highly stable reproducible C60 fullerene aqueous colloid solution probed by various techniques. Fuller. Nanotubes Carbon Nanostruct. 23:530–534, 2015.

    Article  Google Scholar 

  43. Samanta, P. N., and K. K. Das. Noncovalent interaction assisted fullerene for the transportation of some brain anticancer drugs: a theoretical study. J. Mol. Graph. Model. 72:187–200, 2017.

    Article  Google Scholar 

  44. Schuetze, C., U. Ritter, P. Scharff, A. Bychko, S. Prylutska, V. Rybalchenko, et al. Interaction of N-fluorescein-5-isothiocyanate pyrrolidine–C60 compound with a model bimolecular lipid membrane. Mater. Sci. Eng. C 31:1148–1150, 2011.

    Article  Google Scholar 

  45. Shaaban, K. A., S. Srinivasan, R. Kumar, C. Damodaran, and J. Rohr. Landomycins P–W, cytotoxic angucyclines from Streptomyces cyanogenus S-136. J. Nat. Prod. 74:2–11, 2011.

    Article  Google Scholar 

  46. Shimizu, K., R. Kubota, N. Kobayashi, M. Tahara, N. Sugimoto, T. Nishimura, et al. Cytotoxic effects of hydroxylated fullerenes in three types of liver cells. Materials 6:2713–2722, 2013.

    Article  Google Scholar 

  47. Singh, R., and J. W. Lillard, Jr. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 86:215–223, 2009.

    Article  Google Scholar 

  48. Steichen, S. D., M. Caldorera-Moore, and N. A. Peppas. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur. J. Pharm. Sci. 48:416–427, 2013.

    Article  Google Scholar 

  49. Tabata, Y., Y. Murakami, and Y. Ikada. Photodynamic effect of polyethylene glycol-modified fullerene on tumor. Jpn. J. Cancer Res. 88:1108–1116, 1997.

    Article  Google Scholar 

  50. Tolkachov, M., V. Sokolova, V. Korolovych, Y. Prylutskyy, M. Epple, U. Ritter, et al. Study of biocompatibility effect of nanocarbon particles on various cell types in vitro. Mater. Wiss. Werkst. 47:216–221, 2016.

    Article  Google Scholar 

  51. Vereshchaka, I. V., N. V. Bulgakova, A. V. Maznychenko, O. O. Gonchar, Yu. I. Prylutskyy, U. Ritter, et al. C60 fullerenes diminish the muscle fatigue in rats comparable to N-acetylcysteine or β-alanine. Front. Physiol. 9:517, 2018.

    Article  Google Scholar 

Download references

Acknowledgments

V. Bilobrov is grateful to DAAD for financial support within the framework of the Leonhard-Euler Program. This work was partially supported by STCU Project N6256 and state support to Leading Research Group 5889.2018.3.

Conflict of interest

V. Bilobrov, V. Sokolova, S. Prylutska, R. Panchuk, O. Litsis, V. Osetskyi, M. Evstigneev, Yu. Prylutskyy, M. Epple, U. Ritter, J. Rohr declare that they have no conflicts of interest.

Ethical Approval

Neither human studies, nor animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Contributions

The work presented here was carried out in collaboration between all the authors. RP, JR, VO and YP created and characterized nanomaterials. VB and VS performed in vitro and fluorescence microscopy studies. OL and SP characterized nanomaterials using FTIR analysis. ME performed the computer simulations. UR synthesized and characterized C60FAS. M. Epple and YP coordinated the experimental work, analyzed the data, performed the statistical analysis, and wrote the manuscript. All authors discussed the results and commented on the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to M. Evstigneev or Yu. Prylutskyy.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilobrov, V., Sokolova, V., Prylutska, S. et al. A Novel Nanoconjugate of Landomycin A with C60 Fullerene for Cancer Targeted Therapy: In Vitro Studies. Cel. Mol. Bioeng. 12, 41–51 (2019). https://doi.org/10.1007/s12195-018-0548-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-018-0548-5

Keywords

Navigation