Skip to main content

Advertisement

Log in

Layer-by-Layer Assembled Gold Nanoshells for the Intracellular Delivery of miR-34a

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

MicroRNAs (miRNAs) are short noncoding RNAs whose ability to regulate the expression of multiple genes makes them potentially exciting tools to treat disease. Unfortunately, miRNAs cannot passively enter cells due to their hydrophilicity and negative charge. Here, we report the development of layer-by-layer assembled nanoshells (LbL-NS) as vehicles for efficient intracellular miRNA delivery. Specifically, we developed LbL-NS to deliver the tumor suppressor miR-34a into triple-negative breast cancer (TNBC) cells, and demonstrate that these constructs can safely and effectively regulate the expression of SIRT1 and Bcl-2, two known targets of miR-34a, to decrease cell proliferation.

Methods

LbL-NS were made by coating negatively charged nanoshells with alternating layers of positive poly-l-lysine (PLL) and negative miRNA, with the outer layer consisting of PLL to facilitate cellular entry and protect the miRNA. Electron microscopy, spectrophotometry, dynamic light scattering, and miRNA release studies were used to characterize LbL-NS. The particles’ ability to enter MDA-MB-231 TNBC cells, inhibit SIRT1 and Bcl-2 expression, and thereby reduce cell proliferation was examined by confocal microscopy, Western blotting, and EdU assays, respectively.

Results

Each successive coating reversed the nanoparticles’ charge and increased their hydrodynamic diameter, resulting in a final diameter of 208 ± 4 nm and a zeta potential of 53 ± 5 mV. The LbL-NS released ~ 30% of their miR-34a cargo over 5 days in 1× PBS. Excitingly, LbL-NS carrying miR-34a suppressed SIRT1 and Bcl-2 by 46 ± 3 and 35 ± 3%, respectively, and decreased cell proliferation by 33%. LbL-NS carrying scrambled miRNA did not yield these effects.

Conclusion

LbL-NS can efficiently deliver miR-34a to TNBC cells to suppress cancer cell growth, warranting their further investigation as tools for miRNA replacement therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

DEPC:

Diethyl pyrocarbonate

DLS:

Dynamic light scattering

DMEM:

Dulbecco’s Modified Eagle Medium

DMF:

Dimethylformamide

DNA:

Deoxyribonucleic acid

EdU:

5-Ethynyl-2′-deoxyuridine

FBS:

Fetal bovine serum

LAMP-1:

Lysosomal-associated membrane protein 1

LbL:

Layer-by-layer

LbL-NS:

Layer-by-layer assembled nanoshells

MCC:

Mander’s colocalization coefficient

mRNA:

Messenger RNA

miRNA:

microRNA

MUA:

11-Mercaptoundecanoic acid

NaCl:

Sodium chloride

NaOH:

Sodium hydroxide

NS:

Nanoshells

OD:

Optical density

PLL:

Poly-l-lysine

RIPA:

Radioimmunoprecipitation assay

RNA:

Ribonucleic acid

RNAi:

RNA interference

RPM:

Rotations per minute

SEM:

Scanning electron microscopy

SNAr:

Nucleophilic aromatic substitution reaction

TNBC:

Triple-negative breast cancer

TNBS:

2,4,6-Trinitrobenzenesulfonic acid

TNP:

Trinitrophenyl

TRITC:

Tetramethylrhodamine isothiocyanate

UV–Vis:

Ultra violet–visible spectrophotometry

References

  1. Adams, B. D., C. Parsons, and F. J. Slack. The tumor-suppressive and potential therapeutic functions of miR-34a in epithelial carcinomas. Expert Opin. Ther. Targets 20(6):737–753, 2016.

    Article  Google Scholar 

  2. Adams, B., V. Wali, C. Cheng, S. Inukai, C. Booth, S. Agarwal, D. Rimm, B. Győrffy, L. Santarpia, L. Pusztai, W. Saltzman, and F. Slack. mir-34a silences c-SRC to attenuate tumor growth in triple-negative breast cancer. Cancer Res. 76(4):927–939, 2016.

    Article  Google Scholar 

  3. Avery-Kiejda, K. A., S. G. Braye, A. Mathe, J. F. Forbes, and R. J. Scott. Decreased expression of key tumor suppressor microRNAs is associated with lymph node metastasis in triple negative breast cancer. BMC Cancer 14:51, 2014.

    Article  Google Scholar 

  4. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233, 2009.

    Article  Google Scholar 

  5. Beg, M. S., A. J. Brenner, J. Sachdev, M. Borad, Y. K. Kang, J. Stoudemire, S. Smith, A. G. Bader, S. Kim, and D. S. Hong. Phase I study of MEX34, a liposomal mir-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs 35(2):180–188, 2017.

    Article  Google Scholar 

  6. Ben-Shushan, D., E. Markovsky, H. Gibori, G. Tiram, A. Scomparin, and R. Satchi-Fainaro. Overcoming obstacles in microRNA delivery towards improved cancer therapy. Drug Deliv. Transl. Res. 4(1):38–49, 2014.

    Article  Google Scholar 

  7. Calin, G. A., and C. M. Croce. MicroRNA signatures in human cancers. Nat. Rev. Cancer 6(11):857–866, 2006.

    Article  Google Scholar 

  8. Deng, X., M. Cao, J. Zhang, K. Hu, Z. Yin, Z. Zhou, X. Xiao, Y. Yang, W. Sheng, Y. Wu, and Y. Zeng. Hyaluronic acid-chitosan nanoparticles for co-delivery of miR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials 35(14):4333–4344, 2014.

    Article  Google Scholar 

  9. Deng, Z. J., S. W. Morton, E. Ben-Akiva, E. C. Dreaden, K. E. Shopsowitz, and P. T. Hammond. Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment. ACS Nano 7(11):9571–9584, 2013.

    Article  Google Scholar 

  10. Duff, D. G., A. Baiker, and P. P. Edwards. A new hydrosol of gold clusters. 1. Formation and particle-size variation. Langmuir 9(9):2301–2309, 1993.

    Article  Google Scholar 

  11. Elbakry, A., A. Zaky, R. Liebl, R. Rachel, A. Goepferich, and M. Breunig. Layer-by-layer assembled gold nanoparticles for siRNA delivery. Nano Lett. 9(5):2059–2064, 2009.

    Article  Google Scholar 

  12. Gilleron, J., W. Querbes, A. Zeigerer, A. Borodovsky, G. Marsico, U. Schubert, K. Manygoats, S. Seifert, C. Andree, M. Stoter, H. Epstein-Barash, L. Zhang, V. Koteliansky, K. Fitzgerald, E. Fava, M. Bickle, Y. Kalaidzidis, A. Akinc, M. Maier, and M. Zerial. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol. 31(7):638–646, 2013.

    Article  Google Scholar 

  13. Goyal, R., S. K. Tripathi, S. Tyagi, A. Sharma, K. R. Ram, D. K. Chowdhuri, Y. Shukla, P. Kumar, and K. C. Gupta. Linear PEI nanoparticles: efficient pDNA/siRNA carriers in vitro and in vivo. Nanomedicine 8(2):167–175, 2012.

    Article  Google Scholar 

  14. Goyal, R., S. K. Tripathi, E. Vazquez, P. Kumar, and K. C. Gupta. Biodegradable poly(vinyl alcohol)-polyethylenimine nanocomposites for enhanced gene expression in vitro and in vivo. Biomacromolecules 13(1):73–83, 2012.

    Article  Google Scholar 

  15. Grotzky, A., Y. Manaka, S. Fornera, M. Willeke, and P. Walde. Quantification of alpha-polylysine: a comparison of four UV/Vis spectrophotometric methods. Anal. Methods 2(10):1448–1455, 2010.

    Article  Google Scholar 

  16. Gu, L., Z. J. Deng, S. Roy, and P. T. Hammond. A combination RNAi-chemotherapy layer-by-layer nanoparticle for systemic targeting of KRAS/p53 with cisplatin to treat non-small cell lung cancer. Clin. Cancer Res. 23(23):7312–7323, 2017.

    Article  Google Scholar 

  17. Hao, L., P. C. Patel, A. H. Alhasan, D. A. Giljohann, and C. A. Mirkin. Nucleic acid-gold nanoparticle conjugates as mimics of microRNA. Small 7(22):3158–3162, 2011.

    Article  Google Scholar 

  18. Kim, V. N. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 6:376–385, 2005.

    Article  Google Scholar 

  19. Kouri, F. M., L. A. Hurley, W. L. Daniel, E. S. Day, Y. Hua, L. Hao, C.-Y. Peng, T. J. Merkel, M. A. Queisser, C. Ritner, H. Zhang, C. D. James, J. I. Sznajder, L. Chin, D. A. Giljohann, J. A. Kessler, M. E. Peter, C. A. Mirkin, and A. H. Stegh. miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes Dev. 29(7):732–745, 2015.

    Article  Google Scholar 

  20. Kreuzberger, N. L., J. R. Melamed, and E. S. Day. Nanoparticle-mediated gene regulation as a novel strategy for cancer therapy. Del. J. Public Health 3(3):20–24, 2017.

    Google Scholar 

  21. Krzeszinski, J. Y., W. Wei, H. Huynh, Z. Jin, X. Wang, T.-C. Chang, X.-J. Xie, L. He, L. S. Mangala, G. Lopez-Berestein, A. K. Sood, J. T. Mendell, and Y. Wan. miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2. Nature 512(7515):431–435, 2014.

    Article  Google Scholar 

  22. Kuo, W.-H., Y.-Y. Chang, L.-C. Lai, M.-H. Tsai, C. K. Hsiao, K.-J. Chang, and E. Y. Chuang. Molecular characteristics and metastasis predictor genes of triple-negative breast cancer: a clinical study of triple-negative breast carcinomas. PLOS ONE 7(9):e45831, 2012.

    Article  Google Scholar 

  23. Li, L., X. Xie, J. Luo, M. Liu, S. Xi, J. Guo, Y. Kong, M. Wu, J. Gao, Z. Xie, J. Tang, X. Wang, W. Wei, M. Yang, M.-C. Hung, and X. Xie. Targeted expression of mir-34a using the t-visa system suppresses breast cancer growth and invasion. Mol. Ther. 20(12):2326–2334, 2012.

    Article  Google Scholar 

  24. Li, L., L. Yuan, J. Luo, J. Gao, J. Guo, and X. Xie. miR-34a inhibits proliferation and migration of breast cancer through down-regulation of Bcl-2 and SIRT1. Clin. Exp. Med. 13:109–117, 2013.

    Article  Google Scholar 

  25. Liedtke, C., C. Mazouni, K. R. Hess, F. Andre, A. Tordai, J. A. Mejia, W. F. Symmans, A. M. Gonzalez-Angulo, B. Hennessy, M. Green, M. Cristofanilli, G. N. Hortobagyi, and L. Pusztai. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J. Clin. Oncol. 26:1275–1281, 2008.

    Article  Google Scholar 

  26. MacFarlane, L.-A., and P. R. Murphy. MicroRNA: biogenesis, function and role in cancer. Curr. Genom. 11(7):537–561, 2010.

    Article  Google Scholar 

  27. Manders, E. M. M., F. J. Verbeek, and J. A. Aten. Measurement of co-localization of objects in dual-colour confocal images. J. Microsc. 169(3):375–382, 1993.

    Article  Google Scholar 

  28. Melamed, J., R. Riley, D. Valcourt, M. Billingsley, N. Kreuzberger, and E. Day. Quantification of siRNA duplexes bound to gold nanoparticle surfaces. In: Biomedical Nanotechnology: Methods and Protocols2nd, edited by S. H. Petrosko, and E. S. Day. New York: Humana Press, 2017, pp. 1–15.

    Google Scholar 

  29. Misso, G., M. T. D. Martino, G. D. Rosa, A. A. Farooqi, A. Lombardi, V. Campani, M. R. Zarone, A. Gullà, P. Tagliaferri, P. Tassone, and M. Caraglia. miR-34: a new weapon against cancer? Molec. Ther. Nucleic Acids 3:e194, 2014.

    Article  Google Scholar 

  30. Oldenburg, S. J., R. D. Averitt, S. L. Westcott, and N. J. Halas. Nanoengineering of optical resonances. Chem. Phys. Lett. 288(2–4):243–247, 1998.

    Article  Google Scholar 

  31. Poon, Z., D. Chang, X. Zhao, and P. T. Hammond. Layer-by-layer nanoparticles with a pH-sheddable layer for in vivo targeting of tumor hypoxia. ACS Nano 5(6):4284–4292, 2011.

    Article  Google Scholar 

  32. Riley, R. S., and E. S. Day. Frizzled7 antibody-functionalized nanoshells enable multivalent binding for Wnt signaling inhibition in triple negative breast cancer cells. Small 13(26):1700544, 2017.

    Article  Google Scholar 

  33. Rokavec, M., H. Li, L. Jiang, and H. Hermeking. The p53/miR-34 axis in development and disease. J. Mol. Cell Biol. 6(3):214–230, 2014.

    Article  Google Scholar 

  34. Saito, Y., T. Nakaoka, and H. Saito. MicroRNA-34a as a therapeutic agent against human cancer. J. Clin. Med. 4(11):1951–1959, 2015.

    Article  Google Scholar 

  35. Sparrow, J. T., V. V. Edwards, C. Tung, M. J. Logan, M. S. Wadhwa, J. Duguid, and L. C. Smith. Synthetic peptide-based DNA complexes for nonviral gene delivery. Adv. Drug Deliv. Rev. 30(1–3):115–131, 1998.

    Google Scholar 

  36. Stern, J. M., V. V. Kibanov Solomonov, E. Sazykina, J. A. Schwartz, S. C. Gad, and G. P. Goodrich. Initial evaluation of the safety of nanoshell-directed photothermal therapy in the treatment of prostate disease. Int. J. Toxicol. 35(1):38–46, 2016.

    Article  Google Scholar 

  37. Swami, A., R. Goyal, S. K. Tripathi, N. Singh, N. Katiyar, A. K. Mishra, and K. C. Gupta. Effect of homobifunctional crosslinkers on nucleic acids delivery ability of PEI nanoparticles. Int. J. Pharm. 374(1–2):125–138, 2009.

    Article  Google Scholar 

  38. Wittrup, A., A. Ai, X. Liu, P. Hamar, R. Trifonova, K. Charisse, M. Manoharan, T. Kirchhausen, and J. Lieberman. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat. Biotechnol. 33:870–876, 2015.

    Article  Google Scholar 

  39. Wu, Z. W., C. T. Chien, C. Y. Liu, J. Y. Yan, and S. Y. Lin. Recent progress in copolymer-mediated siRNA delivery. J. Drug Target. 20(7):551–560, 2012.

    Article  Google Scholar 

  40. Yamakuchi, M., M. Ferlito, and C. J. Lowenstein. miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl. Acad. Sci. USA 105(36):13421–13426, 2008.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of General Medical Sciences of the National Institutes of Health (NIH) under Award Number R35GM119659 (PI:Day). JRM received support from the Department of Defense through a National Defense Science and Engineering Graduate Fellowship. The content is solely the responsibility of the authors and does not necessarily represent the views of the funding agencies. The LSM880 confocal microscope was acquired with a shared instrumentation Grant (S10 OD016361) and access was supported by the NIH-NIGMS (P20 GM103446), the NSF (IIA-1301765), and the State of Delaware. The Hitachi S4700 used in this work was acquired with the Delaware INBRE Grant P20 GM103446.

Author contributions

All authors conceptualized the experiments. RG, CK, JM, and RR performed the experiments and analyzed the data. ED secured funding for the experiments. All authors wrote and revised the manuscript.

Conflict of interest

Ritu Goyal, Chintan Kapadia, Jilian Melamed, Rachel Riley, and Emily Day declare no conflicts of interest.

Ethical standards

No animal or human studies were performed in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily S. Day.

Additional information

Associate Editor Lola Eniola-Adefeso oversaw the review of this article.

Emily S. Day is an Assistant Professor in the Department of Biomedical Engineering at the University of Delaware. Dr. Day completed her Ph.D. at Rice University in 2006, where she trained with Dr. Jennifer West. There, her research focused on developing nanoparticle-mediated photothermal therapy for treatment of glioblastoma, an aggressive form of primary brain tumor. While at Rice, Dr. Day received a National Science Foundation Graduate Research Fellowship, a Rice President’s Graduate Fellowship, and a Howard Hughes Medical Institute Med-Into-Grad Fellowship. Upon completing her Ph.D., Dr. Day joined the laboratory of Dr. Chad Mirkin at Northwestern University, where she developed RNA-nanoparticle conjugates known as spherical nucleic acids for gene regulation of glioblastoma. Dr. Day was awarded an International Institute for Nanotechnology Postdoctoral Fellowship and a National Institutes of Health F32 Ruth L. Kirschstein National Research Service Award during her time at Northwestern University. Dr. Day started her lab at the University of Delaware in 2013, and her group investigates the interactions between nanoparticles and biological systems to create novel engineering tools for high precision cancer therapy. She has received numerous grants to support her work, including a W.M. Keck Foundation Grant, an NIH/NIGMS R35 Outstanding Investigator Award, and an NSF CAREER.

figure a

This article is part of the 2018 CMBE Young Innovators special issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2676 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, R., Kapadia, C.H., Melamed, J.R. et al. Layer-by-Layer Assembled Gold Nanoshells for the Intracellular Delivery of miR-34a. Cel. Mol. Bioeng. 11, 383–396 (2018). https://doi.org/10.1007/s12195-018-0535-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-018-0535-x

Keywords

Navigation