Skip to main content
Log in

Microfibrous Scaffolds Enhance Endothelial Differentiation and Organization of Induced Pluripotent Stem Cells

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Human induced pluripotent stem cells (iPSCs) are a promising source of endothelial cells (iPSC-ECs) for engineering three-dimensional (3D) vascularized cardiac tissues. To mimic cardiac microvasculature, in which capillaries are oriented in parallel, we hypothesized that endothelial differentiation of iPSCs within topographically aligned 3D scaffolds would be a facile one-step approach to generate iPSC-ECs as well as induce aligned vascular organization.

Methods

Human iPSCs underwent endothelial differentiation within electrospun 3D polycaprolactone (PCL) scaffolds having either randomly oriented or parallel-aligned microfibers. Using gene, protein, and endothelial functional assays, endothelial differentiation was compared between conventional two-dimensional (2D) films and 3D scaffolds having either randomly oriented or aligned microfibers. Furthermore, the role of parallel-aligned microfiber patterning on the organization of vessel-like networks was assessed.

Results

The cells in both the randomly oriented and aligned 3D scaffolds demonstrated an 11-fold upregulation in gene expression of the endothelial phenotypic marker, CD31, compared to cells on 2D films. This upregulation corresponded to >3-fold increase in CD31 protein expression in 3D scaffolds, compared to 2D films. Concomitantly, other endothelial phenotypic markers including CD144 and endothelial nitric oxide synthase also showed significant transcriptional upregulation in 3D scaffolds by >7-fold, compared to 2D films. Nitric oxide production, which is characteristic of endothelial function, was produced 4-fold more abundantly in 3D scaffolds, compared to on 2D PCL films. Within aligned scaffolds, the iPSC-ECs displayed parallel-aligned vascular-like networks with 70% longer branch length, compared to cells in randomly oriented scaffolds, suggesting that fiber topography modulates vascular network-like formation and patterning.

Conclusion

Together, these results demonstrate that a 3D scaffold structure promotes endothelial differentiation, compared to 2D substrates, and that aligned topographical patterning induces anisotropic vascular network-like organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Abbasi, N., S. M. Hashemi, M. Salehi, H. Jahani, S. J. Mowla, M. Soleimani, and H. Hosseinkhani. Influence of oriented nanofibrous pcl scaffolds on quantitative gene expression during neural differentiation of mouse embryonic stem cells. J Biomed Mater Res A 104:155–164, 2016.

    Article  Google Scholar 

  2. Aird, W. C. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100:158–173, 2007.

    Article  Google Scholar 

  3. Ayres, C. E., B. S. Jha, H. Meredith, J. R. Bowman, G. L. Bowlin, S. C. Henderson, and D. G. Simpson. Measuring fiber alignment in electrospun scaffolds: a user’s guide to the 2d fast fourier transform approach. J Biomater Sci Polym Ed 19:603–621, 2008.

    Article  Google Scholar 

  4. Baker, B. M., and C. S. Chen. Deconstructing the third dimension: how 3d culture microenvironments alter cellular cues. J Cell Sci 125:3015–3024, 2012.

    Article  Google Scholar 

  5. Bearden, S. E., and S. S. Segal. Neurovascular alignment in adult mouse skeletal muscles. Microcirculation 12:161–167, 2005.

    Article  Google Scholar 

  6. Blancas, A. A., L. E. Wong, D. E. Glaser, and K. E. McCloskey. Specialized tip/stalk-like and phalanx-like endothelial cells from embryonic stem cells. Stem Cells Dev 22:1398–1407, 2013.

    Article  Google Scholar 

  7. Carcamo-Orive, I., G. E. Hoffman, P. Cundiff, N. D. Beckmann, S. L. D’Souza, J. W. Knowles, A. Patel, D. Papatsenko, F. Abbasi, G. M. Reaven, S. Whalen, P. Lee, M. Shahbazi, M. Y. Henrion, K. Zhu, S. Wang, P. Roussos, E. E. Schadt, G. Pandey, R. Chang, T. Quertermous, and I. Lemischka. Analysis of transcriptional variability in a large human ipsc library reveals genetic and non-genetic determinants of heterogeneity. Cell stem cell 2016. doi:10.1016/j.stem.2016.11.005.

    Google Scholar 

  8. Chen, Y., D. Zeng, L. Ding, X. L. Li, X. T. Liu, W. J. Li, T. Wei, S. Yan, J. H. Xie, L. Wei, and Q. S. Zheng. Three-dimensional poly-(epsilon-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through wnt/beta-catenin signaling. BMC Cell Biol 16:22, 2015.

    Article  Google Scholar 

  9. Chitrangi, S., P. Nair, and A. Khanna. Three-dimensional polymer scaffolds for enhanced differentiation of human mesenchymal stem cells to hepatocyte-like cells: a comparative study. J Tissue Eng Regen Med 2016. doi:10.1002/term.2136.

    Google Scholar 

  10. Cooke, J. P. Flow, no, and atherogenesis. Proc Natl Acad Sci USA 100:768–770, 2003.

    Article  Google Scholar 

  11. Dash, T. K., and V. B. Konkimalla. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: a review. J Controll Release 158:15–33, 2012.

    Article  Google Scholar 

  12. Davignon, J., and P. Ganz. Role of endothelial dysfunction in atherosclerosis. Circulation 109:27–32, 2004.

    Article  Google Scholar 

  13. Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.

    Article  Google Scholar 

  14. Downing, T. L., J. Soto, C. Morez, T. Houssin, A. Fritz, F. Yuan, J. Chu, S. Patel, D. V. Schaffer, and S. Li. Biophysical regulation of epigenetic state and cell reprogramming. Nat Mater 12:1154–1162, 2013.

    Article  Google Scholar 

  15. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.

    Article  Google Scholar 

  16. Festuccia, N., R. Osorno, V. Wilson, and I. Chambers. The role of pluripotency gene regulatory network components in mediating transitions between pluripotent cell states. Curr Opin Genet Dev 23:504–511, 2013.

    Article  Google Scholar 

  17. Furchgott, R. F., and J. V. Zawadzki. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376, 1980.

    Article  Google Scholar 

  18. Geenen, I. L., D. G. Molin, N. M. van den Akker, F. Jeukens, H. M. Spronk, G. W. Schurink, and M. J. Post. Endothelial cells (ecs) for vascular tissue engineering: venous ecs are less thrombogenic than arterial ecs. J Tissue Eng Regen Med 9:564–576, 2015.

    Article  Google Scholar 

  19. Greenbaum, R. A., S. Y. Ho, D. G. Gibson, A. E. Becker, and R. H. Anderson. Left ventricular fibre architecture in man. Br Heart J 45:248–263, 1981.

    Article  Google Scholar 

  20. Guo, C., and L. J. Kaufman. Flow and magnetic field induced collagen alignment. Biomaterials 28:1105–1114, 2007.

    Article  Google Scholar 

  21. He, W., T. Yong, Z. W. Ma, R. Inai, W. E. Teo, and S. Ramakrishna. Biodegradable polymer nanofiber mesh to maintain functions of endothelial cells. Tissue Eng 12:2457–2466, 2006.

    Article  Google Scholar 

  22. Huang, N. F., F. Fleissner, J. Sun, and J. P. Cooke. Role of nitric oxide signaling in endothelial differentiation of embryonic stem cells. Stem Cells Dev 19:1617–1626, 2010.

    Article  Google Scholar 

  23. Huang, N. F., J. Okogbaa, J. C. Lee, A. Jha, T. Zaitseva, M. Paukshto, J. Sun, G. G. Fuller, and J. P. Cooke. The modulation of endothelial cell morphology, function, and survival using anisotropic nanofibrillar collagen scaffolds. Biomaterials 34:4038–4047, 2013.

    Article  Google Scholar 

  24. Huang, N. F., S. Patel, R. G. Thakar, J. Wu, B. S. Hsiao, B. Chu, R. J. Lee, and S. Li. Myotube assembly on nanofibrous and micropatterned polymers. Nano Lett 6:537–542, 2006.

    Article  Google Scholar 

  25. Jenuwein, T., and C. D. Allis. Translating the histone code. Science 293:1074–1080, 2001.

    Article  Google Scholar 

  26. Jeong, S. I., S. Y. Kim, S. K. Cho, M. S. Chong, K. S. Kim, H. Kim, S. B. Lee, and Y. M. Lee. Tissue-engineered vascular grafts composed of marine collagen and plga fibers using pulsatile perfusion bioreactors. Biomaterials 28:1115–1122, 2007.

    Article  Google Scholar 

  27. Kannan, R. Y., H. J. Salacinski, K. Sales, P. Butler, and A. M. Seifalian. The roles of tissue engineering and vascularisation in the development of micro-vascular networks: a review. Biomaterials 26:1857–1875, 2005.

    Article  Google Scholar 

  28. Keung, A. J., S. Kumar, and D. V. Schaffer. Presentation counts: microenvironmental regulation of stem cells by biophysical and material cues. Ann Rev Cell Dev Biol 26:533–556, 2010.

    Article  Google Scholar 

  29. Khorshidi, S., A. Solouk, H. Mirzadeh, S. Mazinani, J. M. Lagaron, S. Sharifi, and S. Ramakrishna. A review of key challenges of electrospun scaffolds for tissue-engineering applications. J Tissue Eng Regen Med 10:715–738, 2016.

    Article  Google Scholar 

  30. Kim, J. J., L. Hou, and N. F. Huang. Vascularization of three-dimensional engineered tissues for regenerative medicine applications. Acta Biomater 2016. doi:10.1016/j.actbio.2016.06.001.

    Google Scholar 

  31. Koehler, K. R., A. M. Mikosz, A. I. Molosh, D. Patel, and E. Hashino. Generation of inner ear sensory epithelia from pluripotent stem cells in 3d culture. Nature 500:217–221, 2013.

    Article  Google Scholar 

  32. Kojima, H., Y. Urano, K. Kikuchi, T. Higuchi, Y. Hirata, and T. Nagano. Fluorescent indicators for imaging nitric oxide production. Angew Chem Int Ed Engl 38:3209–3212, 1999.

    Article  Google Scholar 

  33. Kusuma, S., Y. I. Shen, D. Hanjaya-Putra, P. Mali, L. Cheng, and S. Gerecht. Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proc Natl Acad Sci USA 110:12601–12606, 2013.

    Article  Google Scholar 

  34. Kutys, M. L., and C. S. Chen. Forces and mechanotransduction in 3d vascular biology. Curr Opin Cell Biol 42:73–79, 2016.

    Article  Google Scholar 

  35. Lanfer, B., U. Freudenberg, R. Zimmermann, D. Stamov, V. Korber, and C. Werner. Aligned fibrillar collagen matrices obtained by shear flow deposition. Biomaterials 29:3888–3895, 2008.

    Article  Google Scholar 

  36. Laschke, M. W., Y. Harder, M. Amon, I. Martin, J. Farhadi, A. Ring, N. Torio-Padron, R. Schramm, M. Rucker, D. Junker, J. M. Haufel, C. Carvalho, M. Heberer, G. Germann, B. Vollmar, and M. D. Menger. Angiogenesis in tissue engineering: Breathing life into constructed tissue substitutes. Tissue Eng 12:2093–2104, 2006.

    Article  Google Scholar 

  37. Lee, P., R. Lin, J. Moon, and L. P. Lee. Microfluidic alignment of collagen fibers for in vitro cell culture. Biomed Microdevices 8:35–41, 2006.

    Article  Google Scholar 

  38. Lian, X., X. Bao, A. Al-Ahmad, J. Liu, Y. Wu, W. Dong, K. K. Dunn, E. V. Shusta, and S. P. Palecek. Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of wnt signaling. Stem cell Rep 3:804–816, 2014.

    Article  Google Scholar 

  39. Lin, S., and K. Mequanint. Activation of transcription factor gax and concomitant downregulation of il-1beta and erk1/2 modulate vascular smooth muscle cell phenotype in 3d fibrous scaffolds. Tissue Eng Part A 21:2356–2365, 2015.

    Article  Google Scholar 

  40. Livak, K. J., and T. D. Schmittgen. Analysis of relative gene expression data using real-time quantitative pcr and the 2(-delta delta c(t)) method. Methods 25:402–408, 2001.

    Article  Google Scholar 

  41. Maldonado, M., G. Ico, K. Low, R. J. Luu, and J. Nam. Enhanced lineage-specific differentiation efficiency of human induced pluripotent stem cells by engineering colony dimensionality using electrospun scaffolds. Adv Healthc Mater 5:1408–1412, 2016.

    Article  Google Scholar 

  42. Moncada, S., and A. Higgs. The l-arginine-nitric oxide pathway. N Engl J Med 329:2002–2012, 1993.

    Article  Google Scholar 

  43. Nakayama, K. H., G. Hong, J. C. Lee, J. Patel, B. Edwards, T. S. Zaitseva, M. V. Paukshto, H. Dai, J. P. Cooke, Y. J. Woo, and N. F. Huang. Aligned-braided nanofibrillar scaffold with endothelial cells enhances arteriogenesis. ACS Nano 9:6900–6908, 2015.

    Article  Google Scholar 

  44. Nakayama, K. H., P. A. Joshi, E. S. Lai, P. Gujar, L. M. Joubert, B. Chen, and N. F. Huang. Bilayered vascular graft derived from human induced pluripotent stem cells with biomimetic structure and function. Regen Med 10:745–755, 2015.

    Article  Google Scholar 

  45. Patsch, C., L. Challet-Meylan, E. C. Thoma, E. Urich, T. Heckel, J. F. O’Sullivan, S. J. Grainger, F. G. Kapp, L. Sun, K. Christensen, Y. Xia, M. H. Florido, W. He, W. Pan, M. Prummer, C. R. Warren, R. Jakob-Roetne, U. Certa, R. Jagasia, P. O. Freskgard, I. Adatto, D. Kling, P. Huang, L. I. Zon, E. L. Chaikof, R. E. Gerszten, M. Graf, R. Iacone, and C. A. Cowan. Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat Cell Biol 17:994–1003, 2015.

    Article  Google Scholar 

  46. Paul, A., V. Manoharan, D. Krafft, A. Assmann, J. A. Uquillas, S. R. Shin, A. Hasan, M. A. Hussain, A. Memic, A. K. Gaharwar, and A. Khademhosseini. Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments. J Mater Chem B Mater Biol Med 4:3544–3554, 2016.

    Article  Google Scholar 

  47. Rothan, H. A., I. Djordjevic, H. Bahrani, M. Paydar, F. Ibrahim, N. Abd Rahmanh, and R. Yusof. Three-dimensional culture environment increases the efficacy of platelet rich plasma releasate in prompting skin fibroblast differentiation and extracellular matrix formation. Int J Med Sci 11:1029–1038, 2014.

    Article  Google Scholar 

  48. Sellaro, T. L., D. Hildebrand, Q. Lu, N. Vyavahare, M. Scott, and M. S. Sacks. Effects of collagen fiber orientation on the response of biologically derived soft tissue biomaterials to cyclic loading. J Biomed Mater Res A 80:194–205, 2007.

    Article  Google Scholar 

  49. Sia, J., P. Yu, D. Srivastava, and S. Li. Effect of biophysical cues on reprogramming to cardiomyocytes. Biomaterials 103:1–11, 2016.

    Article  Google Scholar 

  50. Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872, 2007.

    Article  Google Scholar 

  51. Wang, X. N., N. McGovern, M. Gunawan, C. Richardson, M. Windebank, T. W. Siah, H. Y. Lim, K. Fink, J. L. Li, L. G. Ng, F. Ginhoux, V. Angeli, M. Collin, and M. Haniffa. A three-dimensional atlas of human dermal leukocytes, lymphatics, and blood vessels. J Investig Dermatol 134:965–974, 2014.

    Article  Google Scholar 

  52. Wang, X. F., Y. Song, Y. S. Liu, Y. C. Sun, Y. G. Wang, Y. Wang, and P. J. Lyu. Osteogenic differentiation of three-dimensional bioprinted constructs consisting of human adipose-derived stem cells in vitro and in vivo. PLoS One 11:e0157214, 2016.

    Article  Google Scholar 

  53. Wingate, K., W. Bonani, Y. Tan, S. J. Bryant, and W. Tan. Compressive elasticity of three-dimensional nanofiber matrix directs mesenchymal stem cell differentiation to vascular cells with endothelial or smooth muscle cell markers. Acta Biomater 8:1440–1449, 2012.

    Article  Google Scholar 

  54. Wu, Y. T., I. S. Yu, K. J. Tsai, C. Y. Shih, S. M. Hwang, I. J. Su, and P. M. Chiang. Defining minimum essential factors to derive highly pure human endothelial cells from ips/es cells in an animal substance-free system. Sci Rep 5:9718, 2015.

    Article  Google Scholar 

  55. Xie, J., S. M. Willerth, X. Li, M. R. Macewan, A. Rader, S. E. Sakiyama-Elbert, and Y. Xia. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 30:354–362, 2009.

    Article  Google Scholar 

  56. Zaidel-Bar, R., R. Milo, Z. Kam, and B. Geiger. A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions. J Cell Sci 120:137–148, 2007.

    Article  Google Scholar 

  57. Zhang, S., J. R. Dutton, L. Su, J. Zhang, and L. Ye. The influence of a spatiotemporal 3d environment on endothelial cell differentiation of human induced pluripotent stem cells. Biomaterials 35:3786–3793, 2014.

    Article  Google Scholar 

  58. Zhang, J., M. P. Schwartz, Z. Hou, Y. Bai, H. Ardalani, S. Swanson, J. Steill, V. Ruotti, A. Elwell, B. K. Nguyen, J. Bolin, R. Stewart, J. A. Thomson, and W. L. Murphy. A genome-wide analysis of human pluripotent stem cell-derived endothelial cells in 2d or 3d culture. Stem Cell Rep 8:907–918, 2017.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Joshua Knowles, MD, Ph.D. and Ivan Carcamo-Orive, Ph.D., for technical assistance in endothelial differentiation. This study was supported by grants to NFH from the US National Institutes of Health (R00HL098688, R01HL127113, and R21EB020235), Merit Review Award (1I01BX002310) from the Department of Veterans Affairs Biomedical Laboratory Research and Development, the Stanford Women and Sex Differences in Medicine Center, the Stanford Child Health Research Institute. NFH was also supported by a McCormick Gabilan fellowship. MW was supported by a diversity supplement through the US National Institutes of Health (R01HL127113). In addition, this study was supported in part by a grant from US National Institutes of Health (NCATS-CTSA, UL1 TR001085). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the Department of Veterans Affairs.

Conflict of interest

The authors (Joseph J. Kim, Luqia Hou, Guang Yang, Nicholas P. Mezak, Maureen Wanjare, Lydia M. Joubert, and Ngan F. Huang) declare that they have no conflicts of interest.

Ethical Approval

All human subjects research were carried out with informed consent in accordance with institutional guidelines and approved by the Institutional Review Board at Stanford University. No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Contributions

J.J.K. and N.F.H. designed the experiments. J.J.K, L.H., G.Y., N.P.M, M.W. and L.M.J. carried out the experiments. J.J.K., L.H., G.Y., and N.F.H. analyzed and interpreted the data. J.J.K., L.H., G.Y., L.M.J. and N.F.H. wrote the manuscript.

Corresponding author

Correspondence to Ngan F. Huang.

Additional information

Associate Editor Richard Waugh oversaw the review of this article.

This article is part of the 2017 CMBE Young Innovators special issue.

Ngan F. Huang is an Assistant Professor in the Department of Cardiothoracic Surgery at Stanford University and Principal Investigator at the Veterans Affairs Palo Alto Health Care System. Dr. Huang completed her BS in Chemical Engineering from the Massachusetts Institute of Technology under the research guidance of Dr. Robert Langer. She then received her MS and Ph.D. in Bioengineering from the University of California Berkeley & University of California San Francisco Joint Program in Bioengineering under the mentorship of Dr. Song Li. Prior to joining the faculty, she was a postdoctoral scholar in the Division of Cardiovascular Medicine at Stanford University under the guidance of Dr. John Cooke. Her laboratory investigates the interactions between stem cells and the extracellular matrix microenvironment for engineering cardiovascular tissues to treat cardiovascular and musculoskeletal diseases. Dr. Huang has authored over 60 publications and patents, including reports in Nat Med, PNAS, and Nano Lett. She has received numerous honors, including a NIH K99/R00 Career Development Award, Fellow of the American Heart Association, a Young Investigator award from the Society for Vascular Medicine, and a Rising Star award at the CMBE-BMES conference. Her research is funded by the NIH, Department of Defense, and Department of Veteran Affairs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12195_2017_502_MOESM1_ESM.avi

Supplementary Video 1. 3D reconstructed view of CD31 (red) and total nuclei (green) in aligned microfibrous scaffolds, based on confocal microscopy. Supplementary material 1 (AVI 244517 kb)

Supplementary material 2 (PDF 113 kb)

12195_2017_502_MOESM3_ESM.avi

Supplementary Video 2. 3D reconstructed view of CD31 (red) and total nuclei (green) in randomly oriented microfibrous scaffolds, based on confocal microscopy. Supplementary material 3 (AVI 242789 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.J., Hou, L., Yang, G. et al. Microfibrous Scaffolds Enhance Endothelial Differentiation and Organization of Induced Pluripotent Stem Cells. Cel. Mol. Bioeng. 10, 417–432 (2017). https://doi.org/10.1007/s12195-017-0502-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-017-0502-y

Keywords

Navigation