Skip to main content
Log in

LINCing Defective Nuclear-Cytoskeletal Coupling and DYT1 Dystonia

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Mechanical forces generated by nuclear-cytoskeletal coupling through the linker of nucleoskeleton and cytoskeleton (LINC) complex, an evolutionarily conserved molecular bridge in the nuclear envelope (NE), are critical for the execution of wholesale nuclear positioning events in migrating and dividing cells, chromosome dynamics during meiosis, and mechanotransduction. LINC complexes consist of outer Klarsicht, ANC-1, and Syne homology (KASH) and inner Sad1, UNC-84 (SUN) nuclear membrane proteins. KASH proteins interact with the cytoskeleton in the cytoplasm and SUN proteins in the perinuclear space of the NE. In the nucleoplasm, SUN proteins interact with A-type nuclear lamins and chromatin-binding proteins. Recent structural insights into the KASH-SUN interaction have generated several questions regarding how LINC complex assembly and function might be regulated within the perinuclear space. Here we discuss potential LINC regulatory mechanisms and focus on the potential role of the ATPases associated with various cellular activities (AAA+) protein, torsinA, as a LINC complex regulator within the NE. We also examine how defects in LINC complex regulation by torsinA may contribute to the pathogenesis of the human neurological movement disorder, DYT1 dystonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Albanese, A., et al. Phenomenology and classification of dystonia: a consensus update. Mov. Disord. 28:863–873, 2013.

    Article  Google Scholar 

  2. Appenzeller-Herzog, C., and L. Ellgaard. The human PDI family: versatility packed into a single fold. Biochim. Biophys. Acta 1783:535–548, 2008.

    Article  Google Scholar 

  3. Breakefield, X. O., C. Kamm, and P. I. Hanson. TorsinA: movement at many levels. Neuron 31:9–12, 2001.

    Article  Google Scholar 

  4. Breakefield, X. O., et al. The pathophysiological basis of dystonias. Nat. Rev. Neurosci. 9:222–234, 2008.

    Article  Google Scholar 

  5. Bressman, S. B., et al. Idiopathic dystonia among Ashkenazi Jews: evidence for autosomal dominant inheritance. Ann. Neurol. 26:612–620, 1989.

    Article  Google Scholar 

  6. Brown, R. S., C. Zhao, A. R. Chase, J. Wang, and C. Schlieker. The mechanism of Torsin ATPase activation. Proc. Natl. Acad. Sci. USA 111:E4822–E4831, 2014.

    Article  Google Scholar 

  7. Burdette, A. J., P. F. Churchill, G. A. Caldwell, and K. A. Caldwell. The early-onset torsion dystonia-associated protein, torsinA, displays molecular chaperone activity in vitro. Cell Stress Chaperones 15:605–617, 2010.

    Article  Google Scholar 

  8. Burke, B. The nuclear envelope: filling in gaps. Nat. Cell Biol. 3:E273–E274, 2001.

    Article  Google Scholar 

  9. Cain, N. E., and D. A. Starr. SUN proteins and nuclear envelope spacing. Nucleus 6(1):2–7, 2014.

    Article  Google Scholar 

  10. Callan, A. C., S. Bunning, O. T. Jones, S. High, and E. Swanton. Biosynthesis of the dystonia-associated AAA + ATPase torsinA at the endoplasmic reticulum. Biochem. J. 401:607–612, 2007.

    Article  Google Scholar 

  11. Chang, W., H. J. Worman, and G. G. Gundersen. Accessorizing and anchoring the LINC complex for multifunctionality. J. Cell Biol. 208:11–22, 2015.

    Article  Google Scholar 

  12. Crisp, M., et al. Coupling of the nucleus and cytoplasm: role of the LINC complex. J. Cell Biol. 172:41–53, 2006.

    Article  Google Scholar 

  13. de Anda, F. C., et al. Centrosome localization determines neuronal polarity. Nature 436:704–708, 2005.

    Article  Google Scholar 

  14. Dorboz, I., et al. Severe dystonia, cerebellar atrophy, and cardiomyopathy likely caused by a missense mutation in TOR1AIP1. Orphanet J. Rare Dis. 9:174, 2014.

    Article  Google Scholar 

  15. Duong, N. T., et al. Nesprins: tissue-specific expression of epsilon and other short isoforms. PLoS One 9:e94380, 2014.

    Article  Google Scholar 

  16. Epidemiological, S. O. D. I. E. E. S. D. E. C. G. A prevalence study of primary dystonia in eight European countries. J. Neurol. 247:787–792, 2000.

    Article  Google Scholar 

  17. Fahn, S. Concept and classification of dystonia. Adv. Neurol. 50:1–8, 1988.

    Article  Google Scholar 

  18. Gerace, L. TorsinA and torsion dystonia: unraveling the architecture of the nuclear envelope. Proc. Natl. Acad. Sci. USA 101:8839–8840, 2004.

    Article  Google Scholar 

  19. Giles, L. M., J. Chen, L. Li, and L. S. Chin. Dystonia-associated mutations cause premature degradation of torsinA protein and cell-type-specific mislocalization to the nuclear envelope. Hum. Mol. Genet. 17:2712–2722, 2008.

    Article  Google Scholar 

  20. Goodchild, R. E., and W. T. Dauer. Mislocalization to the nuclear envelope: an effect of the dystonia-causing torsinA mutation. Proc. Natl. Acad. Sci. USA 101:847–852, 2004.

    Article  Google Scholar 

  21. Goodchild, R. E., and W. T. Dauer. The AAA + protein torsinA interacts with a conserved domain present in LAP1 and a novel ER protein. J. Cell Biol. 168:855–862, 2005.

    Article  Google Scholar 

  22. Goodchild, R. E., C. E. Kim, and W. T. Dauer. Loss of the dystonia-associated protein torsinA selectively disrupts the neuronal nuclear envelope. Neuron 48:923–932, 2005.

    Article  Google Scholar 

  23. Goodchild, R. E., et al. Access of torsinA to the inner nuclear membrane is activity dependent and regulated in the endoplasmic reticulum. J. Cell Sci. 128:2854–2865, 2015.

    Article  Google Scholar 

  24. Gordon, K. L., and P. Gonzalez-Alegre. Consequences of the DYT1 mutation on torsinA oligomerization and degradation. Neuroscience 157:588–595, 2008.

    Article  Google Scholar 

  25. Hanson, P. I., and S. W. Whiteheart. AAA + proteins: have engine, will work. Nat. Rev. Mol. Cell Biol. 6:519–529, 2005.

    Article  Google Scholar 

  26. Hewett, J. W., et al. TorsinB–perinuclear location and association with torsinA. J. Neurochem. 89:1186–1194, 2004.

    Article  Google Scholar 

  27. Hiraoka, Y., and A. F. Dernburg. The SUN rises on meiotic chromosome dynamics. Dev. Cell 17:598–605, 2009.

    Article  Google Scholar 

  28. Iyer, L. M., D. D. Leipe, E. V. Koonin, and L. Aravind. Evolutionary history and higher order classification of AAA + ATPases. J. Struct. Biol. 146:11–31, 2004.

    Article  Google Scholar 

  29. Jahed, Z., H. Shams, and M. R. Mofrad. A disulfide bond is required for the transmission of forces through SUN-KASH complexes. Biophys. J. 109:501–509, 2015.

    Article  Google Scholar 

  30. Jokhi, V., et al. Torsin mediates primary envelopment of large ribonucleoprotein granules at the nuclear envelope. Cell Rep. 3:988–995, 2013.

    Article  Google Scholar 

  31. Jungwirth, M., M. L. Dear, P. Brown, K. Holbrook, and R. Goodchild. Relative tissue expression of homologous torsinB correlates with the neuronal specific importance of DYT1 dystonia-associated torsinA. Hum. Mol. Genet. 19:888–900, 2010.

    Article  Google Scholar 

  32. Kim, C. E., A. Perez, G. Perkins, M. H. Ellisman, and W. T. Dauer. A molecular mechanism underlying the neural-specific defect in torsinA mutant mice. Proc. Natl. Acad. Sci. USA 107:9861–9866, 2010.

    Article  Google Scholar 

  33. Konakova, M., and S. M. Pulst. Dystonia-associated forms of torsinA are deficient in ATPase activity. J. Mol. Neurosci. 25:105–117, 2005.

    Article  Google Scholar 

  34. Kustedjo, K., M. H. Bracey, and B. F. Cravatt. Torsin A and its torsion dystonia-associated mutant forms are lumenal glycoproteins that exhibit distinct subcellular localizations. J. Biol. Chem. 275:27933–27939, 2000.

    Google Scholar 

  35. Kustedjo, K., S. Deechongkit, J. W. Kelly, and B. F. Cravatt. Recombinant expression, purification, and comparative characterization of torsinA and its torsion dystonia-associated variant Delta E-torsinA. Biochemistry 42:15333–15341, 2003.

    Article  Google Scholar 

  36. Li, R., and G. G. Gundersen. Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nat. Rev. Mol. Cell Biol. 9:860–873, 2008.

    Article  Google Scholar 

  37. Liang, C. C., L. M. Tanabe, S. Jou, F. Chi, and W. T. Dauer. TorsinA hypofunction causes abnormal twisting movements and sensorimotor circuit neurodegeneration. J. Clin. Investig. 124:3080–3092, 2014.

    Article  Google Scholar 

  38. Luxton, G. W., E. R. Gomes, E. S. Folker, E. Vintinner, and G. G. Gundersen. Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 329:956–959, 2010.

    Article  Google Scholar 

  39. Luxton, G. W., E. R. Gomes, E. S. Folker, H. J. Worman, and G. G. Gundersen. TAN lines: a novel nuclear envelope structure involved in nuclear positioning. Nucleus 2:173–181, 2011.

    Article  Google Scholar 

  40. Luxton, G. W., and G. G. Gundersen. Orientation and function of the nuclear-centrosomal axis during cell migration. Curr. Opin. Cell Biol. 23:579–588, 2011.

    Article  Google Scholar 

  41. Luxton, G. W., and D. A. Starr. KASHing up with the nucleus: novel functional roles of KASH proteins at the cytoplasmic surface of the nucleus. Curr. Opin. Cell Biol. 28:69–75, 2014.

    Article  Google Scholar 

  42. Maric, M., et al. A functional role for TorsinA in herpes simplex virus 1 nuclear egress. J. Virol. 85:9667–9679, 2011.

    Article  Google Scholar 

  43. McCarthy, D. M., V. Gioioso, X. Zhang, N. Sharma, and P. G. Bhide. Neurogenesis and neuronal migration in the forebrain of the TorsinA knockout mouse embryo. Dev. Neurosci. 34:366–378, 2012.

    Article  Google Scholar 

  44. Meinke, P., T. D. Nguyen, and M. S. Wehnert. The LINC complex and human disease. Biochem. Soc. Trans. 39:1693–1697, 2011.

    Article  Google Scholar 

  45. Meinke, P., and E. C. Schirmer. LINC’ing form and function at the nuclear envelope. FEBS Lett. 589(19):2514–2521, 2015.

    Article  Google Scholar 

  46. Morris, G. E., and K. N. Randles. Nesprin isoforms: are they inside or outside the nucleus. Biochem. Soc. Trans. 38:278–280, 2010.

    Article  Google Scholar 

  47. Nagy, M., H. C. Wu, Z. Liu, S. Kedzierska-Mieszkowska, and M. Zolkiewski. Walker-A threonine couples nucleotide occupancy with the chaperone activity of the AAA + ATPase ClpB. Protein Sci. 18:287–293, 2009.

    Article  Google Scholar 

  48. Naismith, T. V., S. Dalal, and P. I. Hanson. Interaction of torsinA with its major binding partners is impaired by the dystonia-associated DeltaGAG deletion. J. Biol. Chem. 284:27866–27874, 2009.

    Article  Google Scholar 

  49. Naismith, T. V., J. E. Heuser, X. O. Breakefield, and P. I. Hanson. TorsinA in the nuclear envelope. Proc. Natl. Acad. Sci. USA 101:7612–7617, 2004.

    Article  Google Scholar 

  50. Nery, F. C., et al. TorsinA binds the KASH domain of nesprins and participates in linkage between nuclear envelope and cytoskeleton. J. Cell Sci. 121:3476–3486, 2008.

    Article  Google Scholar 

  51. Nery, F. C., et al. TorsinA participates in endoplasmic reticulum-associated degradation. Nat. Commun. 2:393, 2011.

    Article  Google Scholar 

  52. Nery, F. C., et al. Microfluidic platform to evaluate migration of cells from patients with DYT1 dystonia. J. Neurosci. Methods 232:181–188, 2014.

    Article  Google Scholar 

  53. Neumann, S., and A. A. Noegel. Nesprins in cell stability and migration. Adv. Exp. Med. Biol. 773:491–504, 2014.

    Article  Google Scholar 

  54. Ostlund, C., et al. Dynamics and molecular interactions of linker of nucleoskeleton and cytoskeleton (LINC) complex proteins. J. Cell Sci. 122:4099–4108, 2009.

    Article  Google Scholar 

  55. Ozelius, L. J., and S. B. Bressman. Genetic and clinical features of primary torsion dystonia. Neurobiol. Dis. 42:127–135, 2011.

    Article  Google Scholar 

  56. Ozelius, L. J., et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat. Genet. 17:40–48, 1997.

    Article  Google Scholar 

  57. Ozelius, L. J., et al. The TOR1A (DYT1) gene family and its role in early onset torsion dystonia. Genomics 62:377–384, 1999.

    Article  Google Scholar 

  58. Packard, M., et al. Nucleus to synapse nesprin1 railroad tracks direct synapse maturation through RNA localization. Neuron 86:1015–1028, 2015.

    Article  Google Scholar 

  59. Pham, P., K. P. Frei, W. Woo, and D. D. Truong. Molecular defects of the dystonia-causing torsinA mutation. Neuroreport 17:1725–1728, 2006.

    Article  Google Scholar 

  60. Rose, A. E., C. Zhao, E. M. Turner, A. M. Steyer, and C. Schlieker. Arresting a Torsin ATPase reshapes the endoplasmic reticulum. J. Biol. Chem. 289:552–564, 2014.

    Article  Google Scholar 

  61. Scheffzek, K., M. R. Ahmadian, and A. Wittinghofer. GTPase-activating proteins: helping hands to complement an active site. Trends Biochem. Sci. 23:257–262, 1998.

    Article  Google Scholar 

  62. Shin, J. Y., et al. Lamina-associated polypeptide-1 interacts with the muscular dystrophy protein emerin and is essential for skeletal muscle maintenance. Dev. Cell 26:591–603, 2013.

    Article  Google Scholar 

  63. Sosa, B. A., A. Rothballer, U. Kutay, and T. U. Schwartz. LINC complexes form by binding of three KASH peptides to domain interfaces of trimeric SUN proteins. Cell 149:1035–1047, 2012.

    Article  Google Scholar 

  64. Sosa, B. A., et al. How lamina-associated polypeptide 1 (LAP1) activates Torsin. Elife 3:e03239, 2014.

    Article  Google Scholar 

  65. Speese, S. D., et al. Nuclear envelope budding enables large ribonucleoprotein particle export during synaptic Wnt signaling. Cell 149:832–846, 2012.

    Article  Google Scholar 

  66. Starr, D. A., and M. Han. Role of ANC-1 in tethering nuclei to the actin cytoskeleton. Science 298:406–409, 2002.

    Article  Google Scholar 

  67. Stewart-Hutchinson, P. J., C. M. Hale, D. Wirtz, and D. Hodzic. Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness. Exp. Cell Res. 314:1892–1905, 2008.

    Article  Google Scholar 

  68. Swartz, R. K., E. C. Rodriguez, and M. C. King. A role for nuclear envelope-bridging complexes in homology-directed repair. Mol. Biol. Cell 25:2461–2471, 2014.

    Article  Google Scholar 

  69. Torres, G. E., A. L. Sweeney, J. M. Beaulieu, P. Shashidharan, and M. G. Caron. Effect of torsinA on membrane proteins reveals a loss of function and a dominant-negative phenotype of the dystonia-associated DeltaE-torsinA mutant. Proc. Natl. Acad. Sci. USA 101:15650–15655, 2004.

    Article  Google Scholar 

  70. Turner, E. M., R. S. Brown, E. Laudermilch, P. L. Tsai, and C. Schlieker. The Torsin activator LULL1 is required for efficient growth of HSV-1. J. Virol. 89(16):8444–8452, 2015.

    Article  Google Scholar 

  71. Ulug, A. M., et al. Cerebellothalamocortical pathway abnormalities in torsinA DYT1 knock-in mice. Proc. Natl. Acad. Sci. USA 108:6638–6643, 2011.

    Article  Google Scholar 

  72. Vale, R. D. AAA proteins. Lords of the ring. J. Cell Biol. 150:F13–F19, 2000.

    Article  Google Scholar 

  73. Van der Heyden, A. B., T. V. Naismith, E. L. Snapp, and P. I. Hanson. Static retention of the lumenal monotopic membrane protein torsinA in the endoplasmic reticulum. EMBO J. 30:3217–3231, 2011.

    Article  Google Scholar 

  74. Van der Heyden, A. B., T. V. Naismith, E. L. Snapp, D. Hodzic, and P. I. Hanson. LULL1 retargets TorsinA to the nuclear envelope revealing an activity that is impaired by the DYT1 dystonia mutation. Mol. Biol. Cell 20:2661–2672, 2009.

    Article  Google Scholar 

  75. VanGompel, M. J., K. C. Nguyen, D. H. Hall, W. T. Dauer, and L. S. A. Rose. Novel function for the C. elegans torsin OOC-5 in nucleoporin localization and nuclear import. Mol. Biol. Cell 26(9):1752–1763, 2015.

    Article  Google Scholar 

  76. Wang, W., et al. Structural insights into SUN-KASH complexes across the nuclear envelope. Cell Res. 22:1440–1452, 2012.

    Article  Google Scholar 

  77. Weibezahn, J., C. Schlieker, B. Bukau, and A. Mogk. Characterization of a trap mutant of the AAA + chaperone ClpB. J. Biol. Chem. 278:32608–32617, 2003.

    Article  Google Scholar 

  78. Worman, H. J., and W. T. Dauer. The nuclear envelope: an intriguing focal point for neurogenetic disease. Neurotherapeutics 11:764–772, 2014.

    Article  Google Scholar 

  79. Zhang, X., et al. SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64:173–187, 2009.

    Article  Google Scholar 

  80. Zhao, C., R. S. Brown, A. R. Chase, M. R. Eisele, and C. Schlieker. Regulation of torsin ATPases by LAP1 and LULL1. Proc. Natl. Acad. Sci. USA 110:E1545–E1554, 2013.

    Article  Google Scholar 

  81. Zhou, Z., et al. Structure of Sad1-UNC84 homology (SUN) domain defines features of molecular bridge in nuclear envelope. J. Biol. Chem. 287:5317–5326, 2012.

    Article  Google Scholar 

  82. Zhu, L., L. Millen, J. L. Mendoza, and P. J. Thomas. A unique redox-sensing sensor II motif in TorsinA plays a critical role in nucleotide and partner binding. J. Biol. Chem. 285:37271–37280, 2010.

    Article  Google Scholar 

  83. Zhu, L., J. O. Wrabl, A. P. Hayashi, L. S. Rose, and P. J. Thomas. The torsin-family AAA + protein OOC-5 contains a critical disulfide adjacent to Sensor-II that couples redox state to nucleotide binding. Mol. Biol. Cell 19:3599–3612, 2008.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Drs. Melissa Gardner, David Greenstein, Joachim Mueller, and Meg Titus for helpful discussions. The authors apologize to those whose work we were unable to cite and cover in proper depth due to the limitations of length for this review. Studies in the Luxton Lab are supported by start up funding from the University of Minnesota, a P30 Pilot and Feasibility Grant from the Paul and Sheila Wellstone Muscular Dystrophy Center, and funding from the NIH (R21 NS095109-01, 1R41DA037622, and AR57220). C.A.S. is supported by an NIH training grant (NIH 5T32AR007612-14).

Conflict of interest

Cosmo A. Saunders and G.W. Gant Luxton have no conflicts on interest.

Ethical Standards

The authors for this article carried out neither animal nor human studies for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. W. Gant Luxton.

Additional information

Associate Editor Kris Noel Dahl oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saunders, C.A., Luxton, G.W.G. LINCing Defective Nuclear-Cytoskeletal Coupling and DYT1 Dystonia. Cel. Mol. Bioeng. 9, 207–216 (2016). https://doi.org/10.1007/s12195-016-0432-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-016-0432-0

Keywords

Navigation