Skip to main content
Log in

Fluid Flow Modulation of Murine Embryonic Stem Cell Pluripotency Gene Expression in the Absence of LIF

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Fluid forces are strong modulators of cell fate and fundamental components of spinner flask bioreactors used for stem cell expansion and differentiation. Here, we investigated the effects of fluid forces on murine embryonic stem cells (mESCs) in the absence of Leukemia Inhibitory Factor (LIF) using parallel-plate flow chambers. Cells were seeded onto gelatin-coated glass slides and grown for 2.5 days before exposure to fluid forces. Pluripotency marker gene expression was quantified by qPCR. An average shear stress of 0.6 Pa applied for 24 h in the absence of LIF and presence of high molecular weight dextran increased Oct4 and Sox2, decreased Nanog, and did not change in Rex1 mRNA levels in comparison to statically cultured cells in the presence of LIF. At 0.3 Pa shear stress, Oct4 and Sox2 expression increased, with a reduction in Nanog and Rex1 levels. The presence of pulsation significantly increased expression of Rex1 and Nanog, but not expression of Oct4 or Sox2, compared to cells exposed to steady flow for 24 h. This study suggests incorporation of high cell–cell contact, viscosity elevation with dextran, moderate shear stress (0.6 Pa), and the presence of pulsatility in bioreactor expansion protocols for mESCs to support maintenance of pluripotency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Adamo, L., O. Naveiras, P. L. Wenzel, S. McKinney-Freeman, P. J. Mack, J. Gracia-Sancho, A. Suchy-Dicey, M. Yoshimoto, M. W. Lensch, M. C. Yoder, G. García-Cardeña, and G. Q. Daley. Biomechanical forces promote embryonic haematopoiesis. Nature 459:1131–1135, 2009.

    Article  Google Scholar 

  2. Ahsan, T., and R. M. Nerem. Fluid shear stress promotes an endothelial-like phenotype during the early differentiation of embryonic stem cells. Tissue Eng. Part A 16:3547–3553, 2010.

    Article  Google Scholar 

  3. Borghi, N., M. Sorokina, O. G. Shcherbakova, W. I. Weis, B. L. Pruitt, W. J. Nelson, and A. R. Dunn. E-cadherin is under constitutive actomyosin-generated tension that is increased at cell–cell contacts upon externally applied stretch. Proc. Natl Acad. Sci. U.S.A. 109:12568–12573, 2012.

    Article  Google Scholar 

  4. Carpenedo, R. L., C. Y. Sargent, and T. C. McDevitt. Rotary suspension culture enhances the efficiency, yield, and homogeneity of embryoid body differentiation. Stem Cells 25:2224–2234, 2007.

    Article  Google Scholar 

  5. Chang, T. C., Y. C. Chen, M. H. Yang, C. H. Chen, E. W. Hsing, B. S. Ko, J. Y. Liou, and K. K. Wu. Rho kinases regulate the renewal and neural differentiation of embryonic stem cells in a cell plating density-dependent manner. PLoS ONE 5:e9187, 2010.

    Article  Google Scholar 

  6. Chowdhury, F., Y. Li, Y.-C. Poh, T. Yokohama-Tamaki, N. Wang, and T. S. Tanaka. Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PLoS ONE 5(12):e15655, 2010.

    Article  Google Scholar 

  7. Cormier, J. T., N. I. zur Nieden, D. E. Rancourt, and M. S. Kallos. Expansion of undifferentiated murine embryonic stem cells as aggregates in suspension culture bioreactors. Tissue Eng. 12:3233–3245, 2006.

    Article  Google Scholar 

  8. Fok, E. Y. L., and P. W. Zandstra. Shear-controlled single-step mouse embryonic stem cell expansion and EB-based differentiation. Stem Cell 23:1333–1342, 2005.

    Article  Google Scholar 

  9. Fridley, K. M., M. A. Kinney, and T. C. McDevitt. Hydrodynamic modulation of pluripotent stem cells. Stem Cell Res. Ther. 3:45, 2012.

    Article  Google Scholar 

  10. Fridley, K. M., I. Fernandez, M. T. Li, R. B. Kettlewell, and K. Roy. Unique differentiation profile of mouse embryonic stem cells in rotary and stirred tank bioreactors. Tissue Eng. Part A 16:3285–3298, 2010.

    Article  Google Scholar 

  11. Gareau, T., G. Lara, R. D. Shepherd, J. Taiani, R. Krawetz, D. Rancourt, K. D. Rinker, M. S. Kallos. Shear stress influences pluripotency of murine embryonic stem cells in stirred suspension bioreactors. J. Tissue Eng. Regen. Med., 2012. doi:10.1002/term.1518.

  12. Gilbertson, J., A. Sen, L. A. Behie, and M. S. Kallos. Scaled-up production of mammalian neural stem and progenitor cells in computer-controlled suspension bioreactors. Biotechnol. Bioeng. 94:783–792, 2006.

    Article  Google Scholar 

  13. Kavlock, K. D., and A. S. Goldstein. Effect of pulse frequency on the osteogenic differentiation of mesenchymal stem cells in a pulsatile perfusion bioreactor. J. Biomech. Eng. 133:091005, 2011.

    Article  Google Scholar 

  14. Liu, H., J. Lin, and K. Roy. Effect of 3D scaffold and dynamic culture condition on the global gene expression profile of mouse embryonic stem cells. Biomaterials 27:5978–5989, 2006.

    Article  Google Scholar 

  15. Loh, Y. H., Q. Wu, J. L. Chew, V. B. Vega, W. Zhang, X. Chen, G. Bourque, J. George, B. Leong, J. Liu, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet. 38:431–440, 2006.

    Article  Google Scholar 

  16. Masui, S., Y. Nakatake, Y. Toyooka, D. Shimosato, R. Yagi, K. Takahashi, H. Okochi, A. Okuda, R. Matoba, A. A. Sharov, M. S. Ko, and H. Niwa. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat. Cell Biol. 9:625–635, 2007.

    Article  Google Scholar 

  17. Masui, S., S. Ohtsuka, R. Yagi, K. Takahashi, M. S. Ko, and H. Niwa. Rex1/Zfp42 is dispensable for pluripotency in mouse ES cells. BMC Dev. Biol. 8:45, 2008.

    Article  Google Scholar 

  18. Maul, T. M., D. W. Chew, A. Nieponice, and D. A. Vorp. Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation. Biomech. Model Mechanobiol. 6:939–953, 2011.

    Article  Google Scholar 

  19. McBride, S. H., and M. L. Knothe Tate. Modulation of stem cell shape and fate A: the role of density and seeding protocol on nucleus shape and gene expression. Tissue Eng. Part A. 14:1561–1572, 2008.

    Article  Google Scholar 

  20. Moledina, F., G. Clarke, A. Oskooei, K. Onishi, A. Günther, and P. W. Zandstra. Predictive microfluidic control of regulatory ligand trajectories in individual pluripotent cells. Proc. Natl. Acad. Sci. U.S.A. 9:3264–3269, 2012.

    Article  Google Scholar 

  21. Niwa, H., J. Miyazaki, and A. G. Smith. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24:372–376, 2000.

    Article  Google Scholar 

  22. Palmqvist, L., C. H. Glover, L. Hsu, M. Lu, B. Bossen, J. M. Piret, R. K. Humphries, and C. D. Helgason. Correlation of murine embryonic stem cell gene expression profiles with functional measures of pluripotency. Stem Cells 23:663–680, 2005.

    Article  Google Scholar 

  23. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:e45, 2001.

    Article  Google Scholar 

  24. Sargent, C. Y., G. Y. Berguig, M. A. Kinney, L. A. Hiatt, R. L. Carpenedo, R. E. Berson, and T. C. McDevitt. Hydrodynamic modulation of embryonic stem cell differentiation by rotary orbital suspension culture. Biotechnol. Bioeng. 105:611–626, 2010.

    Article  Google Scholar 

  25. Shafa, M., R. Krawetz, Y. Zhang, J. B. Rattner, A. Godollei, H. J. Duff, and D. E. Rancourt. Impact of stirred suspension bioreactor culture on the differentiation of murine embryonic stem cells into cardiomyocytes. BMC Cell Biol. 12:53, 2011.

    Article  Google Scholar 

  26. Sharp, L. A., Y. W. Lee, and A. S. Goldstein. Effect of low-frequency pulsatile flow on expression of osteoblastic genes by bone marrow stromal cells. Ann. Biomed. Eng. 37:445–453, 2009.

    Article  Google Scholar 

  27. Shepherd, R. D., S. M. Kos, and K. D. Rinker. Long-term pulsatile shear stress leads to increased phosphorylation of multiple MAPK species in cultured human aortic endothelial cells. Biorheology 46:529–538, 2009.

    Google Scholar 

  28. Sun, Y., L. G. Villa-Diaz, R. H. W. Lam, W. Chen, P. H. Krebsback, and J. Fu. Mechanics regulates fate decisions of human embryonic stem cells. PLoS ONE 7(5):e37178. doi:10.1371/journal.pone.0037178.

  29. Taiani, J., R. J. Krawetz, N. zur Nieden, Y. E. Wu, M. S. Kallos, J. R. Matyas, and D. E. Rancourt. Reduced differentiation efficiency of murine embryonic stem cells in stirred suspension bioreactors. Stem Cells Dev. 19:989–998, 2010.

    Article  Google Scholar 

  30. Toh, Y.-C., and J. Voldman. Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparin sulfate proteoglycans transduction. FASEB J. 25:1208–1217, 2011.

    Article  Google Scholar 

  31. Uda, Y., Y.-C. Poh, F. Chowdhury, D. C. Wu, T. S. Tanaka, M. Sato, and N. Wang. Force via integrins but not E-cadherin decreases Oct3/4 expression in embryonic stem cells. Biochem. Biophys. Res. Commun. 415:396–400, 2011.

    Article  Google Scholar 

  32. Venkat, R. V., and J. J. Chalmers. Characterization of agitation environments in 250 ml spinner vessel, 3 L, and 20 L reactor vessels used for animal cell microcarrier culture. Cytotechnology 22:95–102, 1996.

    Article  Google Scholar 

  33. Viegas, K. D., M. Mehdi, S. Dol, R. D. Shepherd, R. Martinuzzi, and K. D. Rinker. Methicillin Resistant Staphylococcus aureus attachment to endothelium is wall shear stress dependent. BioMed. Eng. OnLine 10:20, 2011.

    Article  Google Scholar 

  34. Williams, R. L., D. J. Hilton, S. Pease, T. A. Willson, C. L. Stewart, D. P. Gearing, E. F. Wagner, D. Metcalf, N. A. Nicola, and N. M. Gough. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336:684–687, 1988.

    Article  Google Scholar 

  35. Wolfe, R. P., and T. Ahsan. Shear stress during early embryonic stem cell differentiation promotes hematopoietic and endothelial phenotypes. Biotechnol. Bioeng. 110:1231–1242, 2013.

    Article  Google Scholar 

  36. Wolfe, R. P., J. Leleux, R. M. Nerem, and T. Ahsan. Effects of shear stress on germ lineage specification of embryonic stem cells. Integr. Biol. 4:1263–1273, 2012.

    Article  Google Scholar 

  37. Yamamoto, K., T. Sokabe, T. Watabe, K. Miyazono, J. K. Yamashita, S. Obi, N. Ohura, A. Matsushita, A. Kamiya, and J. Ando. Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. Am. J. Physiol. Heart Circ. Physiol. 288:1915–1924, 2005.

    Article  Google Scholar 

  38. Yee, A., K. A. Bosworth, D. E. Conway, S. G. Eskin, and L. V. McIntire. Gene expression of endothelial cells under pulsatile non-reversing vs. steady shear stress; comparison of nitric oxide production. Ann. Biomed. Eng. 36:571–579, 2008.

    Article  Google Scholar 

  39. zur Nieden, N. I., J. T. Cormier, D. E. Rancourt, and M. S. Kallos. Embryonic stem cells remain highly pluripotent following long term expansion as aggregates in suspension bioreactors. J. Biotechnol. 129:421–432, 2007.

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by the Canadian Institutes of Health Research (CIHR), the Natural Sciences and Engineering Research Council of Canada, and the Department of Chemical and Petroleum Engineering at the University of Calgary. Equipment funding was provided by the Canada Foundation for Innovation and the Alberta Advanced Education and Technology Science and Research Investments Program. GGL and OH held scholarships from the Skeletal Regenerative Medicine Team, funded by CIHR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina D. Rinker.

Additional information

Associate Editor Chwee Teck Lim oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lara, G.G., Hazenbiller, O., Gareau, T. et al. Fluid Flow Modulation of Murine Embryonic Stem Cell Pluripotency Gene Expression in the Absence of LIF. Cel. Mol. Bioeng. 6, 335–345 (2013). https://doi.org/10.1007/s12195-013-0287-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-013-0287-6

Keywords

Navigation