Skip to main content

Advertisement

Log in

Stiffness Increases Mononuclear Cell Transendothelial Migration

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Cardiovascular diseases, including hypertension and the evolution of an atherosclerotic plaque alter the mechanics of the sub-endothelium. The extent to which either arterial softening or stiffening exacerbates or reduces mononuclear leukocyte infiltration from the bloodstream into the wall remains unclear. Mononuclear cell (MNC) transmigration was observed using an in vitro model of the inflamed human vascular endothelium on variable substrate stiffness. Briefly, human aortic endothelial cells were allowed to grow to confluency on gels of 1, 3, 5, 280 kPa, and on glass (~70 GPa), and then activated with TNF-α. Isolated human MNCs were allowed to transmigrate across the inflamed endothelium for 1 h. Fewer MNC transmigrated on soft compared to stiff substrates, yet the relative expression of ICAM-1 and VCAM-1, and the fraction of MNCs that become activated (or changed shape) did not change. Following MNC transendothelial migration the distribution of VCAM-1 is translocated from the apical to basal plasma membrane as revealed through immunofluorescence; since less MNCs transmigrate on soft subendothelial substrates, translocation of VCAM-1 was not observed. These results herein highlight that stiffer subendothelial substrates actually increase MNC transmigration, yet transmigration on stiff substrates can be abrogated by blocking ICAM-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

MNC:

Mononuclear cell

HAEC:

Human aortic endothelial cell

TEM:

Transendothelial migration

MFI:

Mean fluorescent intensity

a.u.:

Arbitrary units

PMN:

Polymorphonuclear cell

References

  1. Akyildiz, A. C., L. Speelman, H. van Brummelen, M. A. Gutierrez, R. Virmani, A. van der Lugt, A. F. van der Steen, J. J. Wentzel, and F. J. Gijsen. Effects of intima stiffness and plaque morphology on peak cap stress. Biomed. Eng. Online 10:25, 2011.

    Article  Google Scholar 

  2. Albelda, S. M., C. W. Smith, and P. A. Ward. Adhesion molecules and inflammatory injury. FASEB J Off. Publ. Fed. Am. Soc. Exp. Biol. 8:504–512, 1994.

    Google Scholar 

  3. Baldewsing, R. A., F. Mastik, J. A. Schaar, P. W. Serruys, and A. F. van der Steen. Young’s modulus reconstruction of vulnerable atherosclerotic plaque components using deformable curves. Ultrasound Med. Biol. 32:201–210, 2006.

    Article  Google Scholar 

  4. Birner, U., T. B. Issekutz, U. Walter, and A. C. Issekutz. The role of Alpha(4) and Lfa-1 integrins in selectin-independent monocyte and neutrophil migration to joints of rats with adjuvant arthritis. Int. Immunol. 12:141–150, 2000.

    Article  Google Scholar 

  5. Boutouyrie, P., A. I. Tropeano, R. Asmar, I. Gautier, A. Benetos, P. Lacolley, and S. Laurent. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension 39:10–15, 2002.

    Article  Google Scholar 

  6. Chatzizisis, Y. S., and G. D. Giannoglou. Coronary hemodynamics and atherosclerotic wall stiffness: a vicious cycle. Med. Hypotheses 69:349–355, 2007.

    Article  Google Scholar 

  7. Chen, X., K. Pavlish, and J. N. Benoit. Myosin phosphorylation triggers actin polymerization in vascular smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 295:H2172–H2177, 2008.

    Google Scholar 

  8. Chien, S., S. Li, and Y. J. Shyy. Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension 31:162–169, 1998.

    Article  Google Scholar 

  9. Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.

    Article  Google Scholar 

  10. Fereol, S., R. Fodil, B. Labat, S. Galiacy, V. M. Laurent, B. Louis, D. Isabey, and E. Planus. Sensitivity of alveolar macrophages to substrate mechanical and adhesive properties. Cell Motil. Cytoskelet. 63:321–340, 2006.

    Article  Google Scholar 

  11. Ferreira, A. M., C. J. McNeil, K. M. Stallaert, K. A. Rogers, and M. Sandig. Interleukin-1beta reduces transcellular monocyte diapedesis and compromises endothelial adherens junction integrity. Microcirculation 12:563–579, 2005.

    Article  Google Scholar 

  12. Gaboury, J. P., and P. Kubes. Reductions in physiologic shear rates lead to Cd11/Cd18-dependent, selectin-independent leukocyte rolling in vivo. Blood 83:345–350, 1994.

    Google Scholar 

  13. Hansson, G. K., and A. Hermansson. The immune system in atherosclerosis. Nat. Immunol. 12:204–212, 2011.

    Article  Google Scholar 

  14. Hansson, G. K., J. Holm, and L. Jonasson. Detection of activated T lymphocytes in the human atherosclerotic plaque. Am. J. Pathol. 135:169–175, 1989.

    Google Scholar 

  15. Hayenga, H. N., A. Trache, J. Trzeciakowski, and J. D. Humphrey. Regional atherosclerotic plaque properties in Apoe−/− mice quantified by atomic force, immunofluorescence, and light microscopy. J. Vasc. Res. 48:495–504, 2011.

    Article  Google Scholar 

  16. Huynh, J., N. Nishimura, K. Rana, J. M. Peloquin, J. P. Califano, C. R. Montague, M. R. King, C. B. Schaffer, and C. A. Reinhart-King. Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration. Sci. Transl. Med. 3:112ra122, 2011.

    Google Scholar 

  17. Issekutz, A. C., D. Rowter, and T. A. Springer. Role of Icam-1 and Icam-2 and alternate Cd11/Cd18 ligands in neutrophil transendothelial migration. J. Leukoc. Biol. 65:117–126, 1999.

    Google Scholar 

  18. Kadono, T., G. M. Venturi, D. A. Steeber, and T. F. Tedder. Leukocyte rolling velocities and migration are optimized by cooperative L-selectin and intercellular adhesion molecule-1 functions. J. Immunol. 169:4542–4550, 2002.

    Google Scholar 

  19. Krishnan, R., D. D. Klumpers, C. Y. Park, K. Rajendran, X. Trepat, J. van Bezu, V. W. van Hinsbergh, C. V. Carman, J. D. Brain, J. J. Fredberg, J. P. Butler, and G. P. van Nieuw Amerongen. Substrate stiffening promotes endothelial monolayer disruption through enhanced physical forces. Am. J. Physiol. Cell Physiol. 300:C146–C154, 2011.

  20. Kunkel, E. J., U. Jung, D. C. Bullard, K. E. Norman, B. A. Wolitzky, D. Vestweber, A. L. Beaudet, and K. Ley. Absence of trauma-induced leukocyte rolling in mice deficient in both P-selectin and intercellular adhesion molecule 1. J. Exp. Med. 183:57–65, 1996.

    Article  Google Scholar 

  21. Langer, H. F., and T. Chavakis. Leukocyte-endothelial interactions in inflammation. J. Cell. Mol. Med. 13:1211–1220, 2009.

    Article  Google Scholar 

  22. Laurent, S., S. Katsahian, C. Fassot, A. I. Tropeano, I. Gautier, B. Laloux, and P. Boutouyrie. Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke J. Cereb. Circ. 34:1203–1206, 2003.

    Article  Google Scholar 

  23. Ley, K., C. Laudanna, M. I. Cybulsky, and S. Nourshargh. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7:678–689, 2007.

    Article  Google Scholar 

  24. Li, H., J. D. Cook, M. Terry, N. C. Spitzer, and M. B. Ferrari. Calcium transients regulate patterned actin assembly during myofibrillogenesis. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 229:231–242, 2004.

    Google Scholar 

  25. Libby, P., P. M. Ridker, and A. Maseri. Inflammation and atherosclerosis. Circulation 105:1135–1143, 2002.

    Article  Google Scholar 

  26. Liu, Z., N. J. Sniadecki, and C. S. Chen. Mechanical forces in endothelial cells during firm adhesion and early transmigration of human monocytes. Cell. Mol. Bioeng. 3:50–59, 2010.

    Article  Google Scholar 

  27. Millan, J., L. Hewlett, M. Glyn, D. Toomre, P. Clark, and A. J. Ridley. Lymphocyte transcellular migration occurs through recruitment of endothelial Icam-1 to caveola- and F-actin-rich domains. Nat. Cell Biol. 8:113–123, 2006.

    Article  Google Scholar 

  28. Muller, W. A. Mechanisms of transendothelial migration of leukocytes. Circ. Res. 105:223–230, 2009.

    Article  Google Scholar 

  29. Muller, W. A. Mechanisms of leukocyte transendothelial migration. Annu. Rev. Pathol. 6:323–344, 2011.

    Article  Google Scholar 

  30. Norman, L. L., and H. Aranda-Espinoza. Cortical neuron outgrowth is insensitive to substrate stiffness. Cell. Mol. Bioeng. 3:398–414, 2010.

    Article  Google Scholar 

  31. Oakes, P. W., D. C. Patel, N. A. Morin, D. P. Zitterbart, B. Fabry, J. S. Reichner, and J. X. Tang. Neutrophil morphology and migration are affected by substrate elasticity. Blood 114:1387–1395, 2009.

    Article  Google Scholar 

  32. Oliver, J. J., and D. J. Webb. Noninvasive assessment of arterial stiffness and risk of atherosclerotic events. Arter. Thromb. Vasc. Biol. 23:554–566, 2003.

    Article  Google Scholar 

  33. Oppenheimer-Marks, N., L. S. Davis, D. T. Bogue, J. Ramberg, and P. E. Lipsky. Differential utilization of Icam-1 and Vcam-1 during the adhesion and transendothelial migration of human T lymphocytes. J. Immunol. 147:2913–2921, 1991.

    Google Scholar 

  34. Park, S., and E. G. Lakatta. Role of inflammation in the pathogenesis of arterial stiffness. Yonsei Med. J. 53:258–261, 2012.

    Article  Google Scholar 

  35. Peloquin, J., J. Huynh, R. M. Williams, and C. A. Reinhart-King. Indentation measurements of the subendothelial matrix in bovine carotid arteries. J. Biomech. 44:815–821, 2011.

    Article  Google Scholar 

  36. Ramahi, T. M. Cardiovascular disease in the Asia Middle East region: global trends and local implications. Asia-Pacific J. Publ. Health/Asia-Pacific Acad. Consortium Publ. Health 22:83S–89S, 2010.

    Article  Google Scholar 

  37. Ruef, P., T. Bohler, and O. Linderkamp. Deformability and volume of neonatal and adult leukocytes. Pediatr. Res. 29:128–132, 1991.

    Article  Google Scholar 

  38. Salas, A., M. Shimaoka, U. Phan, M. Kim, and T. A. Springer. Transition from rolling to firm adhesion can be mimicked by extension of integrin Alphalbeta2 in an intermediate affinity state. J. Biol. Chem. 281:10876–10882, 2006.

    Article  Google Scholar 

  39. Schnoor, M., and C. A. Parkos. Disassembly of endothelial and epithelial junctions during leukocyte transmigration. Frontiers Biosci. J. Virtual Libr. 13:6638–6652, 2008.

    Article  Google Scholar 

  40. Stemme, S., J. Holm, and G. K. Hansson. T lymphocytes in human atherosclerotic plaques are memory cells expressing Cd45ro and the integrin Vla-1. Arter. Thromb. J. Vasc. Biol./Am. Heart Assoc. 12:206–211, 1992.

    Article  Google Scholar 

  41. Stroka, K. M., and H. Aranda-Espinoza. Neutrophils display biphasic relationship between migration and substrate stiffness. Cell Motil. Cytoskelet. 66:328–341, 2009.

    Article  Google Scholar 

  42. Stroka, K. M., and H. Aranda-Espinoza. Endothelial cell substrate stiffness influences neutrophil transmigration via myosin light chain kinase-dependent cell contraction. Blood 118:1632–1640, 2011.

    Article  Google Scholar 

  43. Stroka, K. M., H. N. Hayenga, and H. Aranda-Espinoza. Human neutrophil cytoskeletal dynamics and contractility actively contribute to trans-endothelial migration. PLoS One 8:e61377, 2013.

    Google Scholar 

  44. Sumagin, R., H. Prizant, E. Lomakina, R. E. Waugh, and I. H. Sarelius. Lfa-1 and Mac-1 define characteristically different intralumenal crawling and emigration patterns for monocytes and neutrophils in situ. J. Immunol. 185:7057–7066, 2010.

    Article  Google Scholar 

  45. Sumagin, R., and I. H. Sarelius. A role for Icam-1 in maintenance of leukocyte-endothelial cell rolling interactions in inflamed arterioles. Am. J. Physiol. Heart Circ. Physiol. 293:H2786–H2798, 2007.

    Google Scholar 

  46. Sutton-Tyrrell, K., S. S. Najjar, R. M. Boudreau, L. Venkitachalam, V. Kupelian, E. M. Simonsick, R. Havlik, E. G. Lakatta, H. Spurgeon, S. Kritchevsky, M. Pahor, D. Bauer, and A. Newman. Elevated aortic pulse wave velocity, a marker of arterial stiffness, predicts cardiovascular events in well-functioning older adults. Circulation 111:3384–3390, 2005.

    Article  Google Scholar 

  47. Voisin, M. B., A. Woodfin, and S. Nourshargh. Monocytes and neutrophils exhibit both distinct and common mechanisms in penetrating the vascular basement membrane in vivo. Arteriosclerosis Thromb. Vasc. Biol. 29:1193–1199, 2009.

    Article  Google Scholar 

  48. Wittchen, E. S. Endothelial signaling in paracellular and transcellular leukocyte transmigration. Frontiers Biosci. J. Virtual Libr. 14:2522–2545, 2009.

    Article  Google Scholar 

  49. Yang, L., R. M. Froio, T. E. Sciuto, A. M. Dvorak, R. Alon, and F. W. Luscinskas. Icam-1 regulates neutrophil adhesion and transcellular migration of Tnf-alpha-activated vascular endothelium under flow. Blood 106:584–592, 2005.

    Article  Google Scholar 

  50. Yang, L., J. R. Kowalski, P. Yacono, M. Bajmoczi, S. K. Shaw, R. M. Froio, D. E. Golan, S. M. Thomas, and F. W. Luscinskas. Endothelial cell cortactin coordinates intercellular adhesion molecule-1 clustering and actin cytoskeleton remodeling during polymorphonuclear leukocyte adhesion and transmigration. J. Immunol. 177:6440–6449, 2006.

    Google Scholar 

  51. Yang, J. H., H. Sakamoto, E. C. Xu, and R. T. Lee. Biomechanical regulation of human monocyte/macrophage molecular function. Am. J. Pathol. 156:1797–1804, 2000.

    Article  Google Scholar 

  52. Young, I. T. The classification of white blood cells. IEEE Trans. Bio-med. Eng. 19:291–298, 1972.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully apreciate UMD undergraduates Alex Paraloglou and Sruthi Rajarajan for performing immunofluoresence staining and analyzing data. We also thank Dr. Kim Stroka for technical assistance. Funding was provided by National Science Foundation CMMI-0643783 and Human Frontier Science Project Organization RGP0058/2012 (H.A.E.).

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helim Aranda-Espinoza.

Additional information

Associate Editor Mohammad R. K. Mofrad oversaw the review of this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayenga, H.N., Aranda-Espinoza, H. Stiffness Increases Mononuclear Cell Transendothelial Migration. Cel. Mol. Bioeng. 6, 253–265 (2013). https://doi.org/10.1007/s12195-013-0284-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-013-0284-9

Keywords

Navigation