Skip to main content
Log in

Coordinated Mechanosensitivity of Membrane Rafts and Focal Adhesions

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Endothelial cells sense mechanical forces of blood flow through mechanisms that involve focal adhesions (FAs). The mechanosensitive pathways that originate from FA-associated integrin activation may involve membrane rafts, small cholesterol- and sphigolipid-rich domains that are either immobilized, by virtue of their attachment to the cytoskeleton, or highly mobile in the plane of the plasma membrane. In this study, we fluorescently labeled non-mobile and mobile populations of GM1, a ganglioside associated with lipid rafts, and transfected cells with the red fluorescent protein-(RFP-) talin, an indicator of integrin activation at FAs, in order to determine the kinetics and sequential order of raft and talin mechanosensitivity. Cells were imaged under confocal microscopy during mechanical manipulation of a FA induced by a fibronectin (FN)-functionalized nanoelectrode with feedback control of position. First, FA deformation led to long range deformation of immobile rafts followed by active recoil of a subpopulation of displaced rafts. Second, initial adhesion between the FN-probe and the cell induced rapid accumulation of GM1 at the probe site with a time constant of 1.7 s. Talin accumulated approximately 20 s later with a time constant of 0.6 s. Third, a 1 μm deformation of the FA lead to immediate (0.3 s) increase in GM1 fluorescence and a later (6 s) increase in talin. Fourth, long term deformation of FAs led to continual GM1 accumulation at the probe site that was reversed upon removal of the deformation. These results demonstrate that rafts are directly mechanosensitive and that raft mobility may enable the earliest events related to FA mechanosensing and reinforcement upon force application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Anthis, N. J., K. L. Wegener, F. Ye, C. Kim, B. T. Goult, E. D. Lowe, I. Vakonakis, N. Bate, D. R. Critchley, M. H. Ginsberg, and I. D. Campbell. The structure of an integrin/talin complex reveals the basis of inside-out signal transduction. EMBO J. 28:3623–3632, 2009.

    Article  Google Scholar 

  2. Askari, J. A., P. A. Buckley, A. P. Mould, and M. J. Humphries. Linking integrin conformation to function. J. Cell. Sci. 122:165–170, 2009.

    Article  Google Scholar 

  3. Bini, L., S. Pacini, S. Liberatori, S. Valensin, M. Pellegrini, R. Raggiaschi, V. Pallini, and C. T. Baldari. Extensive temporally regulated reorganization of the lipid raft proteome following T-cell antigen receptor triggering. Biochem. J. 369:301–309, 2003.

    Article  Google Scholar 

  4. Bouaouina, M., Y. Lad, and D. A. Calderwood. The N-terminal domains of talin cooperate with the phosphotyrosine binding-like domain to activate beta1 and beta3 integrins. J. Biol. Chem. 283:6118–6125, 2008.

    Article  Google Scholar 

  5. Brown, D. A., and E. London. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275:17221–17224, 2000.

    Article  Google Scholar 

  6. Butler, P., and Y. Wang. Editorial note: molecular imaging and mechanobiology. Cell. Mol. Bioeng. 4:123–124, 2011.

    Article  Google Scholar 

  7. Calderwood, D. A. Integrin activation. J. Cell. Sci. 117:657–666, 2004.

    Article  Google Scholar 

  8. Campbell, I. D., and M. H. Ginsberg. The talin–tail interaction places integrin activation on FERM ground. Trends Biochem. Sci. 29:429–435, 2004.

    Article  Google Scholar 

  9. Caswell, P. T., S. Vadrevu, and J. C. Norman. Integrins: masters and slaves of endocytic transport. Nat. Rev. Mol. Cell Biol. 10:843–853, 2009.

    Article  Google Scholar 

  10. Chan, C. E., and D. J. Odde. Traction dynamics of filopodia on compliant substrates. Science 322:1687–1691, 2008.

    Article  Google Scholar 

  11. Coughlin, M. F., D. D. Sohn, and G. W. Schmid-Schonbein. Recoil and stiffening by adherent leukocytes in response to fluid shear. Biophys. J. 94:1046–1051, 2008.

    Article  Google Scholar 

  12. Cross, R. A. Myosin’s mechanical ratchet. Proc. Natl Acad. Sci. USA 103:8911–8912, 2006.

    Article  Google Scholar 

  13. Crossthwaite, A. J., T. Seebacher, N. Masada, A. Ciruela, K. Dufraux, J. E. Schultz, and D. M. Cooper. The cytosolic domains of Ca2+-sensitive adenylyl cyclases dictate their targeting to plasma membrane lipid rafts. J. Biol. Chem. 280:6380–6391, 2005.

    Article  Google Scholar 

  14. del Pozo, M. A., N. B. Alderson, W. B. Kiosses, H. H. Chiang, R. G. Anderson, and M. A. Schwartz. Integrins regulate Rac targeting by internalization of membrane domains. Science 303:839–842, 2004.

    Article  Google Scholar 

  15. del Pozo, M. A., N. Balasubramanian, N. B. Alderson, W. B. Kiosses, A. Grande-Garcia, R. G. Anderson, and M. A. Schwartz. Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nat. Cell Biol. 7:901–908, 2005.

    Article  Google Scholar 

  16. del Pozo, M. A., and M. A. Schwartz. Rac, membrane heterogeneity, caveolin and regulation of growth by integrins. Trends Cell Biol. 17:246–250, 2007.

    Article  Google Scholar 

  17. DoHarris, L., A. Giesler, B. Humber, A. Sukumar, and L. J. Janssen. Molecular motors: how to make models that can be used to convey the concept of molecular ratchets and thermal capture. Adv. Physiol. Educ. 35:213–218, 2011.

    Article  Google Scholar 

  18. Eggeling, C., C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schonle, and S. W. Hell. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162, 2009.

    Article  Google Scholar 

  19. Ferko, M. C., A. Bhatnagar, M. B. Garcia, and P. J. Butler. Finite-element stress analysis of a multicomponent model of sheared and focally-adhered endothelial cells. Ann. Biomed. Eng. 35:208–223, 2007.

    Article  Google Scholar 

  20. Foster, L. J., C. L. De Hoog, and M. Mann. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc. Natl Acad. Sci. USA 100:5813–5818, 2003.

    Article  Google Scholar 

  21. Frame, M. D., R. J. Rivers, O. Altland, and S. Cameron. Mechanisms initiating integrin-stimulated flow recruitment in arteriolar networks. J. Appl. Physiol. 102:2279–2287, 2007.

    Article  Google Scholar 

  22. Fuentes, D. E., C. B. Bae, and P. J. Butler. Focal adhesion induction at the tip of a functionalized nanoelectrode. Cell. Mol. Bioeng. 4:616–626, 2011.

    Article  Google Scholar 

  23. Fullekrug, J., and K. Simons. Lipid rafts and apical membrane traffic. Ann. N. Y. Acad. Sci. 1014:164–169, 2004.

    Article  Google Scholar 

  24. Gaus, K., L. S. Le, N. Balasubramanian, and M. A. Schwartz. Integrin-mediated adhesion regulates membrane order. J. Cell Biol. 174:725–734, 2006.

    Article  Google Scholar 

  25. Gebhardt, J. C., A. E. Clemen, J. Jaud, and M. Rief. Myosin-V is a mechanical ratchet. Proc. Natl Acad. Sci. USA 103:8680–8685, 2006.

    Article  Google Scholar 

  26. Gomez-Mouton, C., J. L. Abad, E. Mira, R. A. Lacalle, E. Gallardo, and S. Jimenez-Baranda. Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc. Natl. Acad. Sci. USA 98:9642–9647, 2001.

    Article  Google Scholar 

  27. Goswami, D., K. Gowrishankar, S. Bilgrami, S. Ghosh, R. Raghupathy, R. Chadda, R. Vishwakarma, M. Rao, and S. Mayor. Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135:1085–1097, 2008.

    Article  Google Scholar 

  28. Guan, J. L. Cell biology. Integrins, rafts, Rac, and Rho. Science 303:773–774, 2004.

    Article  Google Scholar 

  29. Gupta, N., B. Wollscheid, J. D. Watts, B. Scheer, R. Aebersold, and A. L. DeFranco. Quantitative proteomic analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor-mediated lipid raft dynamics. Nat. Immunol. 7:625–633, 2006.

    Article  Google Scholar 

  30. Harder, T., P. Scheiffele, P. Verkade, and K. Simons. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141:929–942, 1998.

    Article  Google Scholar 

  31. Hein, T. W., S. H. Platts, K. R. Waitkus-Edwards, L. Kuo, S. A. Mousa, and G. A. Meininger. Integrin-binding peptides containing RGD produce coronary arteriolar dilation via cyclooxygenase activation. Am. J. Physiol. Heart Circ. Physiol. 281:H2378–H2384, 2001.

    Google Scholar 

  32. Houdusse, A., and H. L. Sweeney. Myosin motors: missing structures and hidden springs. Curr. Opin. Struct. Biol. 11:182–194, 2001.

    Article  Google Scholar 

  33. Hu, S., J. Chen, B. Fabry, Y. Numaguchi, A. Gouldstone, D. E. Ingber, J. J. Fredberg, J. P. Butler, and N. Wang. Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells. Am. J. Physiol. Cell Physiol. 285:C1082–C1090, 2003.

    Google Scholar 

  34. Huang, H., R. D. Kamm, and R. T. Lee. Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am. J. Physiol. Cell Physiol. 287:C1–C11, 2004.

    Article  Google Scholar 

  35. Ingber, D. E. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20:811–827, 2006.

    Article  Google Scholar 

  36. Jacobson, K., O. G. Mouritsen, and R. G. Anderson. Lipid rafts: at a crossroad between cell biology and physics. Nat. Cell Biol. 9:7–14, 2007.

    Article  Google Scholar 

  37. Jalali, S., M. A. del Pozo, K. Chen, H. Miao, Y. Li, M. A. Schwartz, J. Y. Shyy, and S. Chien. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc. Natl Acad. Sci. USA 98:1042–1046, 2001.

    Article  Google Scholar 

  38. Jiang, G., A. H. Huang, Y. Cai, M. Tanase, and M. P. Sheetz. Rigidity sensing at the leading edge through alphavbeta3 integrins and RPTPalpha. Biophys. J. 90:1804–1809, 2006.

    Article  Google Scholar 

  39. Katsumi, A., A. W. Orr, E. Tzima, and M. A. Schwartz. Integrins in mechanotransduction. J. Biol. Chem. 279:12001–12004, 2004.

    Article  Google Scholar 

  40. Kniep, B., T. Cinek, P. Angelisova, and V. Horejsi. Association of the GPI-anchored leucocyte surface glycoproteins with ganglioside GM3. Biochem. Biophys. Res. Commun. 203:1069–1075, 1994.

    Article  Google Scholar 

  41. Kwik, J., S. Boyle, D. Fooksman, L. Margolis, M. P. Sheetz, and M. Edidin. Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin. Proc. Natl Acad. Sci. USA 100:13964–13969, 2003.

    Article  Google Scholar 

  42. Levitan, I., and K. J. Gooch. Lipid rafts in membrane-cytoskeleton interactions and control of cellular biomechanics: actions of oxLDL. Antioxid. Redox Signal. 9:1519–1534, 2007.

    Article  Google Scholar 

  43. Lin, Y. Mechanics model for actin-based motility. Phys. Rev. E. Stat. Nonlinear Soft Matter 79(021916):2009, 2009.

    Google Scholar 

  44. Lingwood, D., J. Ries, P. Schwille, and K. Simons. Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc. Natl Acad. Sci. USA 105:10005–10010, 2008.

    Article  Google Scholar 

  45. Lingwood, D., and K. Simons. Lipid rafts as a membrane-organizing principle. Science 327:46–50, 2010.

    Article  Google Scholar 

  46. Lu, S., M. Ouyang, J. Seong, J. Zhang, S. Chien, and Y. Wang. The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging. PLoS Comput. Biol. 4:e1000127, 2008.

    Article  MathSciNet  Google Scholar 

  47. MacLellan, D. L., H. Steen, R. M. Adam, M. Garlick, D. Zurakowski, S. P. Gygi, M. R. Freeman, and K. R. Solomon. A quantitative proteomic analysis of growth factor-induced compositional changes in lipid rafts of human smooth muscle cells. Proteomics 5:4733–4742, 2005.

    Article  Google Scholar 

  48. Matthews, B. D., C. K. Thodeti, J. D. Tytell, A. Mammoto, D. R. Overby, and D. E. Ingber. Ultra-rapid activation of TRPV4 ion channels by mechanical forces applied to cell surface beta1 integrins. Integr. Biol. (Camb.) 2:435–442, 2010.

    Article  Google Scholar 

  49. McMahon, K. A., M. Zhu, S. W. Kwon, P. Liu, Y. Zhao, and R. G. Anderson. Detergent-free caveolae proteome suggests an interaction with ER and mitochondria. Proteomics 6:143–152, 2006.

    Article  Google Scholar 

  50. Merritt, E. A., S. Sarfaty, F. van den Akker, C. L’Hoir, J. A. Martial, and W. G. Hol. Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci. 3:166–175, 1994.

    Article  Google Scholar 

  51. Mitchell, J. S., W. S. Brown, D. G. Woodside, P. Vanderslice, and B. W. McIntyre. Clustering T-cell GM1 lipid rafts increases cellular resistance to shear on fibronectin through changes in integrin affinity and cytoskeletal dynamics. Immunol. Cell Biol. 87:324–336, 2009.

    Article  Google Scholar 

  52. Mogilner, A., and G. Oster. Force generation by actin polymerization II: the elastic ratchet and tethered filaments. Biophys. J. 84:1591–1605, 2003.

    Article  Google Scholar 

  53. Norambuena, A., and M. A. Schwartz. Effects of integrin-mediated cell adhesion on plasma membrane lipid raft components and signaling. Mol. Biol. Cell 22:3456–3464, 2011.

    Article  Google Scholar 

  54. Norman, L. L., R. J. Oetama, M. Dembo, F. Byfield, D. A. Hammer, I. Levitan, and H. Aranda-Espinoza. Modification of cellular cholesterol content affects traction force, adhesion and cell spreading. Cell. Mol. Bioeng. 3:151–162, 2010.

    Article  Google Scholar 

  55. Parton, R. G. Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J. Histochem. Cytochem. 42:155–166, 1994.

    Article  Google Scholar 

  56. Pike, L. J. Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. J. Lipid Res. 47:1597–1598, 2006.

    Article  Google Scholar 

  57. Pike, L. J. The challenge of lipid rafts. J. Lipid Res. 50(Suppl):S323–S328, 2009.

    Article  Google Scholar 

  58. Rotblat, B., L. Belanis, H. Liang, R. Haklai, G. Elad-Zefadia, J. F. Hancock, Y. Kloog, and S. J. Plowman. H-Ras nanocluster stability regulates the magnitude of MAPK signal output. PLoS One 5:e11991, 2010.

    Article  Google Scholar 

  59. Scheiffele, P., M. G. Roth, and K. Simons. Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J. 16:5501–5508, 1997.

    Article  Google Scholar 

  60. Schuck, S., and K. Simons. Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J. Cell. Sci. 117:5955–5964, 2004.

    Article  Google Scholar 

  61. Singh, R. D., D. L. Marks, E. L. Holicky, C. L. Wheatley, T. Kaptzan, S. B. Sato, T. Kobayashi, K. Ling, and R. E. Pagano. Gangliosides and beta1-integrin are required for caveolae and membrane domains. Traffic 11:348–360, 2010.

    Article  Google Scholar 

  62. Smotrys, J. E., and M. E. Linder. Palmitoylation of intracellular signaling proteins: regulation and function. Annu. Rev. Biochem. 73:559–587, 2004.

    Article  Google Scholar 

  63. Sprenger, R. R., D. Speijer, J. W. Back, C. G. De Koster, H. Pannekoek, and A. J. Horrevoets. Comparative proteomics of human endothelial cell caveolae and rafts using two-dimensional gel electrophoresis and mass spectrometry. Electrophoresis 25:156–172, 2004.

    Article  Google Scholar 

  64. Suzuki, K. G., T. K. Fujiwara, F. Sanematsu, R. Iino, M. Edidin, and A. Kusumi. GPI-anchored receptor clusters transiently recruit Lyn and G alpha for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J. Cell Biol. 177:717–730, 2007.

    Article  Google Scholar 

  65. Tabouillot, T., H. S. Muddana, and P. J. Butler. Endothelial cell membrane sensitivity to shear stress is lipid domain dependent. Cell. Mol. Bioeng. 4:169–181, 2011.

    Article  Google Scholar 

  66. van Zanten, T. S., A. Cambi, M. Koopman, B. Joosten, C. G. Figdor, and M. F. Garcia-Parajo. Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesion. Proc. Natl Acad. Sci. USA 106:18557–18562, 2009.

    Article  Google Scholar 

  67. Vassilieva, E. V., K. Gerner-Smidt, A. I. Ivanov, and A. Nusrat. Lipid rafts mediate internalization of beta1-integrin in migrating intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 295:G965–G976, 2008.

    Article  Google Scholar 

  68. von Wichert, G., G. Jiang, A. Kostic, K. De Vos, J. Sap, and M. P. Sheetz. RPTP-alpha acts as a transducer of mechanical force on alphav/beta3-integrin-cytoskeleton linkages. J. Cell Biol. 161:143–153, 2003.

    Article  Google Scholar 

  69. Wang, N., J. P. Butler, and D. E. Ingber. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127, 1993.

    Article  Google Scholar 

  70. Wang, N., J. D. Tytell, and D. E. Ingber. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10:75–82, 2009.

    Article  Google Scholar 

  71. Yamabhai, M., and R. G. Anderson. Second cysteine-rich region of epidermal growth factor receptor contains targeting information for caveolae/rafts. J. Biol. Chem. 277:24843–24846, 2002.

    Article  Google Scholar 

  72. Yang, B. H., and V. Rizzo. TNF-alpha potentiates protein-tyrosine nitration through activation of NADPH oxidase and eNOS localized in membrane rafts and caveolae of bovine aortic endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 292:H954–H962, 2007.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by grants to PJB from NIH (R01 HL 07754201) and NSF (BES 0238910).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Butler.

Additional information

Associate Editor David J. Odde oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuentes, D.E., Butler, P.J. Coordinated Mechanosensitivity of Membrane Rafts and Focal Adhesions. Cel. Mol. Bioeng. 5, 143–154 (2012). https://doi.org/10.1007/s12195-012-0225-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-012-0225-z

Keywords

Navigation