Skip to main content
Log in

Difference in Energy Metabolism of Annulus Fibrosus and Nucleus Pulposus Cells of the Intervertebral Disc

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Low back pain is associated with intervertebral disc degeneration. One of the main signs of degeneration is the inability to maintain extracellular matrix integrity. Extracellular matrix synthesis is closely related to production of adenosine triphosphate (i.e. energy) of the cells. The intervertebral disc is composed of two major anatomical regions: annulus fibrosus and nucleus pulposus, which are structurally and compositionally different, indicating that their cellular metabolisms may also be distinct. The objective of this study was to investigate energy metabolism of annulus fibrosus and nucleus pulposus cells with and without dynamic compression, and examine differences between the two cell types. Porcine annulus and nucleus tissues were harvested and enzymatically digested. Cells were isolated and embedded into agarose constructs. Dynamically loaded samples were subjected to a sinusoidal displacement at 2 Hz and 15% strain for 4 h. Energy metabolism of cells was analyzed by measuring adenosine triphosphate content and release, glucose consumption, and lactate/nitric oxide production. A comparison of those measurements between annulus and nucleus cells was conducted. Annulus and nucleus cells exhibited different metabolic pathways. Nucleus cells had higher adenosine triphosphate content with and without dynamic loading, while annulus cells had higher lactate production and glucose consumption. Compression increased adenosine triphosphate release from both cell types and increased energy production of annulus cells. Dynamic loading affected energy metabolism of intervertebral disc cells, with the effect being greater in annulus cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Adams, M. A., P. Dolan, and D. S. McNally. The internal mechanical functioning of intervertebral discs and articular cartiladge, and its relevance to matrix biology. Matrix Biol. 28:384–389, 2009.

    Article  Google Scholar 

  2. Anderson, H. C. Matrix vesicles and calcification. Curr. Rheumatol. Rep. 5:222–226, 2003.

    Article  Google Scholar 

  3. Antoniou, J., T. Steffen, F. Nelson, et al. The human intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J. Clin. Invest. 98:996–1003, 1996.

    Article  Google Scholar 

  4. Bernick, S., and R. Cailliet. Vertebral end-plate changes with aging of human vertebrae. Spine 7:97–102, 1982.

    Article  Google Scholar 

  5. Bibby, S. R., D. A. Jones, R. M. Ripley, et al. Metabolism of the intervertebral disc: effects of low levels of oxygen, glucose, and pH on rates of energy metabolism of bovine nucleus pulposus cells. Spine 30:487–496, 2005.

    Article  Google Scholar 

  6. Bogduk, N. Clinical Anatomy of the Lunbar Spine and Sacrum. Livingstone: Elsevier Churchill, 2005.

    Google Scholar 

  7. Boos, N., S. Weissbach, H. Rohrbach, et al. Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine 27:2631–2644, 2002.

    Article  Google Scholar 

  8. Bron, J. L., M. N. Helder, H.-J. Meisel, et al. Repair, regenerative and supportive therapies of the annulus fibrosus: achievements and challenges. Eur. Spine J. 18:301–313, 2009.

    Article  Google Scholar 

  9. Buschmann, M. D., Y. A. Gluzband, A. J. Grodzinsky, et al. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J. Cell. Sci. 108:1497–1508, 1995.

    Google Scholar 

  10. Chowdhury, T. T., and M. M. Knight. Purinergic pathway suppresses the release of NO and stimulates proteoglycan synthesis in chondrocyte/agarose constructs subjected to dynamic compression. J. Cell. Physiol. 209:845–853, 2006.

    Article  Google Scholar 

  11. Fermor, B., J. B. Weinberg, D. S. Pisetsky, et al. The influence of oxygen tension on the induction of nitric oxide and prostaglandin E2 by mechanical stress in articular cartilage. Osteoarthr. Cartil. 13:935–941, 2005.

    Article  Google Scholar 

  12. Golub, E. E. Role of matrix vesicles in biomineralizationBiochim. Biophys. Acta 1790:1592–1598, 2009.

    Google Scholar 

  13. Granger, D. L., N. M. Anstey, W. C. Miller, et al. Measuring nitric oxide production in human clinical studies. Meth. Enzymol. 301:49–61, 1999.

    Article  Google Scholar 

  14. Gu, W. Y., H. Yao, C.-Y. Huang, and H. S. Cheung. New insight into deformation-dependent hydraulic permeability and dynamic compressive behavior of agarose gels. J. Biomech. 36:593–598, 2003.

    Article  Google Scholar 

  15. Guehring, T., A. Nerlich, M. Kroeber, et al. Sensitivity of notochordal disc cells to mechanical loading: an experimental animal study. Eur. Spine J. 19:113–121, 2010.

    Article  Google Scholar 

  16. Guehring, T., G. Wilde, M. Sumner, et al. Notochordal intervertebral disc cells: sensitivity to nutrient deprivation. Arthritis Rheum. 60:1026–1034, 2009.

    Article  Google Scholar 

  17. Hadjipavlou, A. G., M. N. Tzermiadianos, N. Bogduk, et al. The pathophysiology of disc degeneration. J. Bone Joint Surg. Br. 90-B:1261–1270, 2008.

    Article  Google Scholar 

  18. Hashimoto, S., R. L. Ochs, F. Rosen, et al. Chondrocyte-derived apoptotic bodies and calcification of articular cartilage. Proc. Ann. Natl Acad. Med. Sci. 95:3094–3099, 1998.

    Article  Google Scholar 

  19. Hickey, D. S., and D. W. L. Hukins. Relation between the structure of the annulus fibrosus and the function and failure of the intervertebral disc. Spine 5:106–116, 1980.

    Article  Google Scholar 

  20. Higuchi, M., K. Kaneda, and K. Abe. Postnatal histogenesis of the cartilage plate of the spinal column: electron microscopic observations. Spine 7:89–96, 1982.

    Article  Google Scholar 

  21. Huang, C.-Y., and W. Y. Gu. Effects of mechanical compression on metabolism and distribution of oxygen and lactate in intervertebral disc. J. Biomech. 41:1184–1196, 2008.

    Article  Google Scholar 

  22. Huang, C.-Y., K. L. Hagar, L. E. Frost, et al. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells. 22:313–323, 2004.

    Article  Google Scholar 

  23. Huang, C.-Y., T.-Y. Yuan, A. R. Jackson, L. Hazbun, C. Fraker, and W. Y. Gu. Effects of low glucose concentrations on oxygen consumption rates of intervertebral disc cells. Spine 32:2063–2069, 2007.

    Article  Google Scholar 

  24. Humzah, M. D., and R. W. Soames. Human intervertebral disc: structure and function. Anat. Rec. 220:337–356, 1988.

    Article  Google Scholar 

  25. Hunter, C. J., J. R. Matyas, and N. A. Duncan. The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering. Tissue Eng. 9:667–677, 2003.

    Article  Google Scholar 

  26. Hutton, W. C., W. A. Elmer, S. D. Boden, et al. The effect of hydrostatic pressure on intervertebral disc metabolism. Spine 24:1507–1515, 1999.

    Article  Google Scholar 

  27. Jackson, A. R., T.-Y. Yuan, C.-Y. Huang, et al. Effect of compression and anisotropy on the diffusion of glucose in annulus fibrosus. Spine 33:1–7, 2008.

    Article  Google Scholar 

  28. Johnson, K., and R. Terkeltaub. Inorganic pyrophosphate (PPi) in pathologic calcification of articular cartilage. Front. Biosci. 10:988–997, 2005.

    Article  Google Scholar 

  29. Kandel, R., S. Roberts, and J. P. Urban. Tissue engineering and the intervertebral disc: the challenges. Eur. Spine 17:S480–S491, 2008.

    Article  Google Scholar 

  30. Kasra, M., V. Goel, J. Martin, et al. Effect of dynamic hydrostatic pressure on rabbit intervertebral disc cells. J. Orthoptera Res. 21:597–603, 2003.

    Article  Google Scholar 

  31. Kasra, M., W. D. Merryman, K. N. Loveless, et al. Frequency response of pig intervertebral disc cells subjected to dynamic hydrostatic pressure. J. Orthoptera Res. 24:1967–1973, 2006.

    Article  Google Scholar 

  32. Kelsey, J. L., A. L. Golden, and D. J. Mundt. Low back pain/prolapsed lumbar intervertebral disc. Rheum. Dis. Clin. North Am. 16:699–716, 1990.

    Google Scholar 

  33. Kliskey, K., K. Williams, J. Yu, et al. The presence and absence of lymphatic vessels in the adult intervertebral disc: relation to disc pathology. Skeletal Radiol. 38:1169–1173, 2009.

    Article  Google Scholar 

  34. Korecki, C. L., C. K. Kuo, R. S. Tuan, et al. Intervertebral disc cell response to dynamic compression is age and frequency dependent. J. Orthoptera Res. 27:800–806, 2009.

    Article  Google Scholar 

  35. Korecki, C. L., J. J. MacLean, and J. C. Iatridis. Dynamic compression effects of intervertebral disc mechanics and biology. Spine 33:1403–1409, 2008.

    Article  Google Scholar 

  36. Lee, R. B., R. J. Wilikins, S. Razaq, et al. The effect of mechanical stress on cartilage energy metabolism. Biorheology 39:133–143, 2002.

    Google Scholar 

  37. Lodish, H., A. Berk, P. Matsudaira, et al. Molecular Cell Biology (5th ed.). New York: W. H. Freeman and Company, 2004.

    Google Scholar 

  38. Luoma, K., H. Riihimaki, R. Luukkonen, et al. Low back pain in relation to lumbar disc degeneration. Spine 25:487–492, 2000.

    Article  Google Scholar 

  39. Marchand, F., and A. M. Ahmed. Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine 15:402–410, 1990.

    Article  Google Scholar 

  40. Miyazaki, T., S. Kobayashi, K. Takeno, et al. A phenotypic comparison of proteoglycan production of intervertebral disc cells isolated from rats, rabbits, and bovine tails: which animal model is most suitable to study tissue engineering and biological repair of human disc disorders? Tissue Eng. Part A. 15:3835–3846, 2009.

    Article  Google Scholar 

  41. Nachemson, A., and G. Elfstrom. Intravital dynamic pressure measurements in lumbar discs: a study of common movements, maneuvers and exercises. Scand. J. Rehabil. Med. Supplement 1:1–40, 1970.

    Google Scholar 

  42. Nachemson, A., T. Lewin, A. Maroudas, et al. In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. Acta Orthop. Scand. 41:589–607, 1970.

    Article  Google Scholar 

  43. Oegema, T. R. Biochemistry of the intervertebral disc. Clin. Sports Med. 12:419–439, 1993.

    Google Scholar 

  44. Ohshima, H., J. P. Urban, and D. H. Bergel. Effect of static load on matrix synthesis rates in the intervertebral disc measured in vitro by a new perfusion technique. J. Orthoptera Res. 13:22–29, 1995.

    Article  Google Scholar 

  45. Raj, P. P. Intervertebral disc: anatomy-phisiology-pathophisiology-treatment. Pain Pract. 8:18–44, 2008.

    Article  Google Scholar 

  46. Ryan, L. M., I. V. Kurup, B. A. Derfus, et al. ATP-induced chondrocalcinosis. Arthritis Rheum. 35:1520–1525, 1992.

    Article  Google Scholar 

  47. Ryan, L. M., and A. K. Rosenthal. Metabolism of extracellular pyrophosphate. Curr. Opin. Rheumatol. 15:311–314, 2003.

    Article  Google Scholar 

  48. Terkeltaub, R. A. Inorganic pyrophosphate generation and disposition in pathophysiology. Am. J. Physiol. Cell Physiol. 281:C1–C11, 2001.

    Google Scholar 

  49. Urban, J. P., and S. Roberts. Degeneration of the intervertebral disc. Arthritis Res. Ther. 5:120–130, 2003.

    Article  Google Scholar 

  50. Urban, J. P., S. Smith, and J. C. T. Fairbank. Nutrition of the intervertebral disc. Spine 29:2700–2709, 2004.

    Article  Google Scholar 

  51. Vernon-Roberts, B., and C. J. Pirie. Degenerative changes in the intervertebral discs of the lumbar spine and their sequelae. Rheumatol. Rehabil. 16:13–21, 1977.

    Article  Google Scholar 

  52. Villanueva, I., D. S. Hauschulz, D. Mejic, et al. Static and dynamic compressive strains influence nitric oxide production and chondrocyte bioactivity when encapsulated in PEG hydrogels of different cosslinking densities. Osteoarthr. Cartil. 16:909–918, 2008.

    Article  Google Scholar 

  53. Wang, W., J. Xu, B. Du, et al. Role of the progressive ankylosis gene (ank) in cartilage mineralization. Mol. Cell. Biol. 25:312–323, 2005.

    Article  Google Scholar 

  54. Yang, X., and X. Li. Nucleus pulposus tissue engineering: a brief review. Eur. Spine J. 18:1564–1572, 2009.

    Article  Google Scholar 

  55. Yuan, T. Y., A. R. Jackson, C.-Y. Huang, et al. Strain-dependent oxygen diffusivity in bovine annulus fibrosus. J. Biomech. Eng. 131:074503, 2009.

    Article  Google Scholar 

  56. Zhao, C.-Q., L.-M. Wang, L.-S. Jiang, et al. The cell biology of intervertebral disc aging and degeneration. Ageing Res. Rev. 6:247–261, 2007.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from NIH NIAMS (AR056101 and AR050609). The authors would like to thank Dr. Armando Mendez from the Diabetes Research Institute for his assistance in obtaining glucose measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-Y. Charles Huang.

Additional information

Associate Editor Marc Levenston oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czamanski Salvatierra, J., Yuan, T.Y., Fernando, H. et al. Difference in Energy Metabolism of Annulus Fibrosus and Nucleus Pulposus Cells of the Intervertebral Disc. Cel. Mol. Bioeng. 4, 302–310 (2011). https://doi.org/10.1007/s12195-011-0164-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-011-0164-0

Keywords

Navigation