Skip to main content
Log in

Stepwise Increasing and Decreasing Fluid Shear Stresses Differentially Regulate the Functions of Osteoblasts

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

It is well accepted that osteoblasts respond to fluid shear stress (FSS) depending on the loading magnitude, rate, and temporal profiles. Although in vivo observations demonstrated that bone mineral density changes as the training intensity gradually increases/decreases, whether osteoblasts perceive such slow temporal changes in the strength of stimulation remains unclear. In this study, we hypothesized that osteoblasts can detect and respond differentially to the temporal gradients of FSS. In specific, we hypothesized that when the temporal FSS gradient is high enough, (i) the increasing FSS inhibits the osteoblastic potential in supporting osteoclastogenesis and enhances the osteoblastic anabolic responses; (ii) on the other hand, the deceasing FSS would have opposite effects on osteoclastogenesis and anabolic responses. To test the hypotheses, stepwise varying FSS was applied on primary osteoblasts and osteogenic and resorption markers were analyzed. The cells were subjected to FSS increasing from 5, 10, to 15 or decreasing from 15, 10, to 5 dyn/cm2 at a step of 5 dyn/cm2 for either 6 or 12 h. In a subset experiment, the cells were stimulated with stepwise increasing or decreasing FSS at a higher step (10 dyn/cm2) for 12 h. Our results showed that, with the step of 5 dyn/cm2, the stepwise increasing FSS inhibited the osteoclastogenesis with a 3- to 4-fold decrease in RANKL/OPG gene expression vs. static controls, while the stepwise decreasing FSS increased RANKL/OPG ratio by 2- to 2.5-fold vs. static controls. Both increasing and decreasing FSS enhanced alkaline phosphatase expression and calcium deposition by 1.0- to 1.8 fold vs. static controls. For a higher FSS temporal gradient (three steps of 10 dyn/cm2 over 12 h stimulation), the increasing FSS enhanced the expression of alkaline phosphatase expression and calcium deposition by 1.3 fold, while the decreasing FSS slightly inhibited them by −10% compared with static controls. Taken together, our results suggested that osteoblasts can detect the slow temporal gradients of FSS and respond differentially in a dose-dependent manner, which may account for the observed bone mineral density changes in response to the gradual increasing/decreasing exercise in vivo. The stepwise FSS can be a useful model to study bone cell responses to long-term mechanical usage or disuse. These studies will complement the short-term studies and provide additional clinically relevant insights on bone adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Bacabac, R. G., T. H. Smit, M. G. Mullender, J. J. Van Loon, and J. Klein-Nulend. Initial stress-kick is required for fluid shear stress-induced rate dependent activation of bone cells. Ann. Biomed. Eng. 33:104–110, 2005.

    Article  Google Scholar 

  2. Batra, N. N., Y. J. Li, C. E. Yellowley, L. You, A. M. Malone, C. H. Kim, and C. R. Jacobs. Effects of short-term recovery periods on fluid-induced signaling in osteoblastic cells. J. Biomech. 38:1909–1917, 2005.

    Article  Google Scholar 

  3. Burger, E. H., J. Klein-Nulend, and J. P. Veldhuijzen. Modulation of osteogenesis in fetal bone rudiments by mechanical stress in vitro. J. Biomech. 24(Suppl 1):101–109, 1991.

    Article  Google Scholar 

  4. Chen, N. X., K. D. Ryder, F. M. Pavalko, C. H. Turner, D. B. Burr, J. Qiu, and R. L. Duncan. Ca(2+) regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts. Am. J. Physiol. Cell Physiol. 278:C989–C997, 2000.

    Google Scholar 

  5. Chen, N. X., D. J. Geist, D. C. Genetos, F. M. Pavalko, and R. L. Duncan. Fluid shear-induced NFkappaB translocation in osteoblasts is mediated by intracellular calcium release. Bone 33:399–410, 2003.

    Article  Google Scholar 

  6. Christenson, R. H. Biochemical markers of bone metabolism: an overview. Clin. Biochem. 30:573–593, 1997.

    Article  Google Scholar 

  7. Donahue, S. W., C. R. Jacobs, and H. J. Donahue. Flow-induced calcium oscillations in rat osteoblasts are age, loading frequency, and shear stress dependent. Am. J. Physiol. Cell. Physiol. 281:C1635–C1641, 2001.

    Google Scholar 

  8. Donahue, S. W., H. J. Donahue, and C. R. Jacobs. Osteoblastic cells have refractory periods for fluid-flow-induced intracellular calcium oscillations for short bouts of flow and display multiple low-magnitude oscillations during long-term flow. J. Biomech. 36:35–43, 2003.

    Article  Google Scholar 

  9. Donahue, T. L., T. R. Haut, C. E. Yellowley, H. J. Donahue, and C. R. Jacobs. Mechanosensitivity of bone cells to oscillating fluid flow induced shear stress may be modulated by chemotransport. J. Biomech. 36:1363–1371, 2003.

    Article  Google Scholar 

  10. Ecarot-Charrier, B., F. H. Glorieux, M. van der Rest, and G. Pereira. Osteoblasts isolated from mouse calvaria initiate matrix mineralization in culture. J. Cell Biol. 96:639–643, 1983.

    Article  Google Scholar 

  11. Ferraro, J. T., M. Daneshmand, R. Bizios, and V. Rizzo. Depletion of plasma membrane cholesterol dampens hydrostatic pressure and shear stress-induced mechanotransduction pathways in osteoblast cultures. Am. J. Physiol. Cell Physiol. 286:C831–C839, 2004.

    Article  Google Scholar 

  12. Frost, H. M. Bone “mass” and the “mechanostat”: a proposal. Anat. Rec. 219:1–9, 1987.

    Article  Google Scholar 

  13. Genetos, D. C., D. J. Geist, D. Liu, H. J. Donahue, and R. L. Duncan. Fluid shear-induced ATP secretion mediates prostaglandin release in MC3T3–E1 osteoblasts. J. Bone Miner. Res. 20:41–49, 2005.

    Article  Google Scholar 

  14. Heinonen, A., P. Oja, P. Kannus, H. Sievanen, H. Haapasalo, A. Manttari, and I. Vuori. Bone mineral density in female athletes representing sports with different loading characteristics of the skeleton. Bone 17:197–203, 1995.

    Article  Google Scholar 

  15. Hillsley, M. V., and J. A. Frangos. Alkaline phosphatase in osteoblasts is down-regulated by pulsatile fluid flow. Calcif. Tissue Int. 60:48–53, 1997.

    Article  Google Scholar 

  16. Hung, C. T., S. R. Pollack, T. M. Reilly, and C. T. Brighton. Real-time calcium response of cultured bone cells to fluid flow. Clin. Orthop. Relat. Res. 1:256–269, 1995.

    Google Scholar 

  17. Jaasma, M. J., W. M. Jackson, R. Y. Tang, and T. M. Keaveny. Adaptation of cellular mechanical behavior to mechanical loading for osteoblastic cells. J. Biomech. 40:1938–1945, 2007.

    Article  Google Scholar 

  18. Jackson, W. M., M. J. Jaasma, R. Y. Tang, and T. M. Keaveny. Mechanical loading by fluid shear is sufficient to alter the cytoskeletal composition of osteoblastic cells. Am. J. Physiol. Cell. Physiol. 295:C1007–C1015, 2008.

    Article  Google Scholar 

  19. Jacobs, C. R., C. E. Yellowley, B. R. Davis, Z. Zhou, J. M. Cimbala, and H. J. Donahue. Differential effect of steady versus oscillating flow on bone cells. J. Biomech. 31:969–976, 1998.

    Article  Google Scholar 

  20. Jekir, M. G., and H. J. Donahue. Gap junctions and osteoblast-like cell gene expression in response to fluid flow. J. Biomech. Eng. 131:011005, 2009.

    Article  Google Scholar 

  21. Jiang, G. L., C. R. White, H. Y. Stevens, and J. A. Frangos. Temporal gradients in shear stimulate osteoblastic proliferation via ERK1/2 and retinoblastoma protein. Am. J. Physiol. Endocrinol. Metab. 283:E383–E389, 2002.

    Google Scholar 

  22. Johnson, D. L., T. N. McAllister, and J. A. Frangos. Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts. Am. J. Physiol. 271:E205–E208, 1996.

    Google Scholar 

  23. Judex, S., and R. F. Zernicke. High-impact exercise and growing bone: relation between high strain rates and enhanced bone formation. J. Appl. Physiol. 88:2183–2191, 2000.

    Google Scholar 

  24. Kapur, S., D. J. Baylink, and K. H. Lau. Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone 32:241–251, 2003.

    Article  Google Scholar 

  25. Kim, C. H., L. You, C. E. Yellowley, and C. R. Jacobs. Oscillatory fluid flow-induced shear stress decreases osteoclastogenesis through RANKL and OPG signaling. Bone 39:1043–1047, 2006.

    Article  Google Scholar 

  26. Klein-Nulend, J., C. M. Semeins, N. E. Ajubi, P. J. Nijweide, and E. H. Burger. Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts–correlation with prostaglandin upregulation. Biochem. Biophys. Res. Commun. 217:640–648, 1995.

    Article  Google Scholar 

  27. Klein-Nulend, J., M. H. Helfrich, J. G. Sterck, H. MacPherson, M. Joldersma, S. H. Ralston, C. M. Semeins, and E. H. Burger. Nitric oxide response to shear stress by human bone cell cultures is endothelial nitric oxide synthase dependent. Biochem. Biophys. Res. Commun. 250:108–114, 1998.

    Article  Google Scholar 

  28. Kong, Y. Y., H. Yoshida, I. Sarosi, H. L. Tan, E. Timms, C. Capparelli, S. Morony, A. J. Oliveira-dos-Santos, G. Van, A. Itie, W. Khoo, A. Wakeham, C. R. Dunstan, D. L. Lacey, T. W. Mak, W. J. Boyle, and J. M. Penninger. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323, 1999.

    Article  Google Scholar 

  29. Kreke, M. R., W. R. Huckle, and A. S. Goldstein. Fluid flow stimulates expression of osteopontin and bone sialoprotein by bone marrow stromal cells in a temporally dependent manner. Bone 36:1047–1055, 2005.

    Article  Google Scholar 

  30. Kurokouchi, K., C. R. Jacobs, and H. J. Donahue. Oscillating fluid flow inhibits TNF-alpha -induced NF-kappa B activation via an Ikappa B kinase pathway in osteoblast-like UMR106 cells. J. Biol. Chem. 276:13499–13504, 2001.

    Article  Google Scholar 

  31. Lang, T., A. LeBlanc, H. Evans, Y. Lu, H. Genant, and A. Yu. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J. Bone Miner. Res. 19:1006–1012, 2004.

    Article  Google Scholar 

  32. Lee, D. Y., C. R. Yeh, S. F. Chang, P. L. Lee, S. Chien, C. K. Cheng, and J. J. Chiu. Integrin-mediated expression of bone formation-related genes in osteoblast-like cells in response to fluid shear stress: roles of extracellular matrix, Shc, and mitogen-activated protein kinase. J. Bone Miner. Res. 23:1140–1149, 2008.

    Article  Google Scholar 

  33. Liegibel, U. M., U. Sommer, B. Bundschuh, B. Schweizer, U. Hilscher, A. Lieder, P. Nawroth, and C. Kasperk. Fluid shear of low magnitude increases growth and expression of TGFbeta1 and adhesion molecules in human bone cells in vitro. Exp. Clin. Endocrinol. Diabetes 112:356–363, 2004.

    Article  Google Scholar 

  34. Liu, D., D. C. Genetos, Y. Shao, D. J. Geist, J. Li, H. Z. Ke, C. H. Turner, and R. L. Duncan. Activation of extracellular-signal regulated kinase (ERK1/2) by fluid shear is Ca(2+)- and ATP-dependent in MC3T3-E1 osteoblasts. Bone 42:644–652, 2008.

    Article  Google Scholar 

  35. McAllister, T. N., and J. A. Frangos. Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways. J. Bone Miner. Res. 14:930–936, 1999.

    Article  Google Scholar 

  36. McGarry, J. G., J. Klein-Nulend, and P. J. Prendergast. The effect of cytoskeletal disruption on pulsatile fluid flow-induced nitric oxide and prostaglandin E2 release in osteocytes and osteoblasts. Biochem. Biophys. Res. Commun. 330:341–348, 2005.

    Article  Google Scholar 

  37. Mehrotra, M., M. Saegusa, S. Wadhwa, O. Voznesensky, D. Peterson, and C. Pilbeam. Fluid flow induces Rankl expression in primary murine calvarial osteoblasts. J. Cell. Biochem. 98:1271–1283, 2006.

    Article  Google Scholar 

  38. Mehrotra, M., M. Saegusa, O. Voznesensky, and C. Pilbeam. Role of Cbfa1/Runx2 in the fluid shear stress induction of COX-2 in osteoblasts. Biochem. Biophys. Res. Commun. 341:1225–1230, 2006.

    Article  Google Scholar 

  39. Mosley, J. R. Osteoporosis and bone functional adaptation: mechanobiological regulation of bone architecture in growing and adult bone, a review. J. Rehabil. Res. Dev. 37:189–199, 2000.

    Google Scholar 

  40. Myers, K. A., J. B. Rattner, N. G. Shrive, and D. A. Hart. Osteoblast-like cells and fluid flow: cytoskeleton-dependent shear sensitivity. Biochem. Biophys. Res. Commun. 364:214–219, 2007.

    Article  Google Scholar 

  41. Nauman, E. A., R. L. Satcher, T. M. Keaveny, B. P. Halloran, and D. D. Bikle. Osteoblasts respond to pulsatile fluid flow with short-term increases in PGE(2) but no change in mineralization. J. Appl. Physiol. 90:1849–1854, 2001.

    Google Scholar 

  42. Norvell, S. M., S. M. Ponik, D. K. Bowen, R. Gerard, and F. M. Pavalko. Fluid shear stress induction of COX-2 protein and prostaglandin release in cultured MC3T3-E1 osteoblasts does not require intact microfilaments or microtubules. J. Appl. Physiol. 96:957–966, 2004.

    Article  Google Scholar 

  43. Norvell, S. M., M. Alvarez, J. P. Bidwell, and F. M. Pavalko. Fluid shear stress induces beta-catenin signaling in osteoblasts. Calcif. Tissue Int. 75:396–404, 2004.

    Article  Google Scholar 

  44. Pavalko, F. M., N. X. Chen, C. H. Turner, D. B. Burr, S. Atkinson, Y. F. Hsieh, J. Qiu, and R. L. Duncan. Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions. Am. J. Physiol. 275:C1591–C1601, 1998.

    Google Scholar 

  45. Pavalko, F. M., R. L. Gerard, S. M. Ponik, P. J. Gallagher, Y. Jin, and S. M. Norvell. Fluid shear stress inhibits TNF-alpha-induced apoptosis in osteoblasts: a role for fluid shear stress-induced activation of PI3-kinase and inhibition of caspase-3. J. Cell. Physiol. 194:194–205, 2003.

    Article  Google Scholar 

  46. Ponik, S. M., and F. M. Pavalko. Formation of focal adhesions on fibronectin promotes fluid shear stress induction of COX-2 and PGE2 release in MC3T3-E1 osteoblasts. J. Appl. Physiol. 97:135–142, 2004.

    Article  Google Scholar 

  47. Ponik, S. M., J. W. Triplett, and F. M. Pavalko. Osteoblasts and osteocytes respond differently to oscillatory and unidirectional fluid flow profiles. J. Cell. Biochem. 100:794–807, 2007.

    Article  Google Scholar 

  48. Rangaswami, H., N. Marathe, S. Zhuang, Y. Chen, J. C. Yeh, J. A. Frangos, G. R. Boss, and R. B. Pilz. Type II cGMP-dependent protein kinase mediates osteoblast mechanotransduction. J. Biol. Chem. 284:14796–14808, 2009.

    Article  Google Scholar 

  49. Reich, K. M., and J. A. Frangos. Effect of flow on prostaglandin E2 and inositol trisphosphate levels in osteoblasts. Am. J. Physiol. 261:C428–C432, 1991.

    Google Scholar 

  50. Reich, K. M., C. V. Gay, and J. A. Frangos. Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. J. Cell. Physiol. 143:100–104, 1990.

    Article  Google Scholar 

  51. Robling, A. G., F. M. Hinant, D. B. Burr, and C. H. Turner. Shorter, more frequent mechanical loading sessions enhance bone mass. Med. Sci. Sports Exerc. 34:196–202, 2002.

    Article  Google Scholar 

  52. Robling, A. G., F. M. Hinant, D. B. Burr, and C. H. Turner. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J. Bone Miner. Res. 17:1545–1554, 2002.

    Article  Google Scholar 

  53. Sakai, K., M. Mohtai, and Y. Iwamoto. Fluid shear stress increases transforming growth factor beta 1 expression in human osteoblast-like cells: modulation by cation channel blockades. Calcif. Tissue Int. 63:515–520, 1998.

    Article  Google Scholar 

  54. Sakai, K., M. Mohtai, J. Shida, K. Harimaya, S. Benvenuti, M. L. Brandi, T. Kukita, and Y. Iwamoto. Fluid shear stress increases interleukin-11 expression in human osteoblast-like cells: its role in osteoclast induction. J. Bone Miner. Res. 14:2089–2098, 1999.

    Article  Google Scholar 

  55. Saxon, L. K., A. G. Robling, I. Alam, and C. H. Turner. Mechanosensitivity of the rat skeleton decreases after a long period of loading, but is improved with time off. Bone 36:454–464, 2005.

    Article  Google Scholar 

  56. Schriefer, J. L., S. J. Warden, L. K. Saxon, A. G. Robling, and C. H. Turner. Cellular accommodation and the response of bone to mechanical loading. J. Biomech. 38:1838–1845, 2005.

    Article  Google Scholar 

  57. Siller-Jackson, A. J., S. Burra, S. Gu, X. Xia, L. F. Bonewald, E. Sprague, and J. X. Jiang. Adaptation of connexin 43-hemichannel prostaglandin release to mechanical loading. J. Biol. Chem. 283:26374–26382, 2008.

    Article  Google Scholar 

  58. Skerry, T. M. The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch. Biochem. Biophys. 473:117–123, 2008.

    Article  Google Scholar 

  59. Smalt, R., F. T. Mitchell, R. L. Howard, and T. J. Chambers. Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain. Am. J. Physiol. 273:E751–E758, 1997.

    Google Scholar 

  60. Srinivasan, S., D. A. Weimer, S. C. Agans, S. D. Bain, and T. S. Gross. Low-magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle. J. Bone Miner. Res. 17:1613–1620, 2002.

    Article  Google Scholar 

  61. Suva, L. J., D. Gaddy, D. S. Perrien, R. L. Thomas, and D. M. Findlay. Regulation of bone mass by mechanical loading: microarchitecture and genetics. Curr. Osteoporos. Rep. 3:46–51, 2005.

    Article  Google Scholar 

  62. Tervo, T., P. Nordstrom, M. Neovius, and A. Nordstrom. Reduced physical activity corresponds with greater bone loss at the trabecular than the cortical bone sites in men. Bone 2009.

  63. Thi, M. M., T. Kojima, S. C. Cowin, S. Weinbaum, and D. C. Spray. Fluid shear stress remodels expression and function of junctional proteins in cultured bone cells. Am. J. Physiol. Cell Physiol. 284:C389–C403, 2003.

    Google Scholar 

  64. Thi, M. M., D. A. Iacobas, S. Iacobas, and D. C. Spray. Fluid shear stress upregulates vascular endothelial growth factor gene expression in osteoblasts. Ann. N. Y. Acad. Sci. 1117:73–81, 2007.

    Article  Google Scholar 

  65. Turner, C. H., and F. M. Pavalko. Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation. J. Orthop. Sci. 3:346–355, 1998.

    Article  Google Scholar 

  66. Vuori, I., A. Heinonen, H. Sievanen, P. Kannus, M. Pasanen, and P. Oja. Effects of unilateral strength training and detraining on bone mineral density and content in young women: a study of mechanical loading and deloading on human bones. Calcif. Tissue Int. 55:59–67, 1994.

    Article  Google Scholar 

  67. Wadhwa, S., S. Choudhary, M. Voznesensky, M. Epstein, L. Raisz, and C. Pilbeam. Fluid flow induces COX-2 expression in MC3T3-E1 osteoblasts via a PKA signaling pathway. Biochem. Biophys. Res. Commun. 297:46–51, 2002.

    Article  Google Scholar 

  68. Weinbaum, S., S. C. Cowin, and Y. Zeng. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27:339–360, 1994.

    Article  Google Scholar 

  69. You, J., G. C. Reilly, X. Zhen, C. E. Yellowley, Q. Chen, H. J. Donahue, and C. R. Jacobs. Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts. J. Biol. Chem. 276:13365–13371, 2001.

    Article  Google Scholar 

  70. Young, S. R., R. Gerard-O’Riley, J. B. Kim, and F. M. Pavalko. Focal adhesion kinase is important for fluid shear stress-induced mechanotransduction in osteoblasts. J. Bone Miner. Res. 24:411–424, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from NSF of China (10972243), STC of Chongqing, China (2007BB5167), Project 111 of China (B0602), and NIH of the USA (R01AR054385).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Pan or Liyun Wang.

Additional information

Associate Editor Edward Guo oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, J., Zhang, T., Mi, L. et al. Stepwise Increasing and Decreasing Fluid Shear Stresses Differentially Regulate the Functions of Osteoblasts. Cel. Mol. Bioeng. 3, 376–386 (2010). https://doi.org/10.1007/s12195-010-0132-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-010-0132-0

Keywords

Navigation