Skip to main content
Log in

A second order numerical method for singularly perturbed problem with non-local boundary condition

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The aim of this paper is to present a monotone numerical method on uniform mesh for solving singularly perturbed three-point reaction–diffusion boundary value problems. Firstly, properties of the exact solution are analyzed. Difference schemes are established by the method of the integral identities with the appropriate quadrature rules with remainder terms in integral form. It is then proved that the method is second-order uniformly convergent with respect to singular perturbation parameter, in discrete maximum norm. Finally, one numerical example is presented to demonstrate the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adzic, N.: Spectral approximation and nonlocal boundary value problems. Novi Sad J. Math. 30(3), 1–10 (2000)

    MathSciNet  Google Scholar 

  2. Amiraliyev, G.M., Cakir, M.: Numerical solution of the singularly perturbed problem with nonlocal condition. Appl. Math. Mech. (Engl. Ed.) 23(7), 755–764 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amiraliyev, G.M., Mamedov, Y.D.: Difference schemes on the uniform mesh for singular perturbed pseudo-parabolic equations. Turk. J. Math. 19, 207–222 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Arslan, D.: A new second-order difference approximation for nonlocal boundary value problem with boundary layers. Math. Model. Anal. 25(2), 257–270 (2020)

    Article  MathSciNet  Google Scholar 

  5. Benchohra, M., Ntouyas, S.K.: Existence of solutions of nonlinear differential equations with nonlocal conditions. J. Math. Anal. Appl. 252, 477–483 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bitsadze, A.V., Samarskii, A.A.: On some simpler generalization of linear elliptic boundary value problem. Dokl. Akad. Nauk SSSR 185, 739–740 (1969)

    MathSciNet  Google Scholar 

  7. Cakir, M., Cimen, E., Amiraliyev, G.M.: The difference schemes for solving singularly perturbed three-point boundary value problem. Lith. Math. J. 60(2), 147–160 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cakir, M.: A numerical study on the difference solution of singularly perturbed semilinear problem with integral boundary condition. Math. Model. Anal. 21(5), 644–658 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cakir, M., Amiraliyev, G.M.: A finite difference method for the singularly perturbed problem with nonlocal boundary condition. Appl. Math. Comput. 160, 539–549 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Cakir, M.: Uniform second-order difference method for a singularly perturbed three-point boundary value problem. Adv. Differ. Equ. 2010, 1–13 (2010). https://doi.org/10.1155/2010/102484

    Article  MathSciNet  MATH  Google Scholar 

  11. Cen, Z.: A second- order finite difference scheme for a class of singularly perturbed delay differential equations. Int. J. Comput. Math. 87(1), 173–185 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cen, Z., Le, A., Xu, A.: Parameter-uniform hybrid difference for solutions and derivatives in singularly perturbed initial value problems. J. Comput. Appl. Math. 320, 176–192 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ciegis, R.: The numerical solution of singularly perturbed nonlocal problem (in Russian). Lietuvas Matematica Rink 28, 144–152 (1988)

    Google Scholar 

  14. Ciegis, R.: The difference scheme for problems with nonlocal conditions. Informatica (Lietuva) 2, 155–170 (1991)

    MathSciNet  MATH  Google Scholar 

  15. Cimen, E., Cakir, M.: Numerical treatment of nonlocal boundary value problem with layer behavior. Bull. Belgian Math. Soc. Simon Stevin 24, 339–352 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Clavero, C., Gracia, J.L., Lisbona, F.: High order methods on Shishkin meshes for singular perturbation problems of convection-diffusion type. Numer. Algorithms 22, 73–97 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Debela, H.G., Duressa, G.F.: Uniformly convergent numerical method for singularly perturbed convection-diffusion type problems with non-local boundary condition. Int. J. Numer. Methods Fluids 92, 1914–1926 (2020)

    Article  Google Scholar 

  18. Debela, H.G., Duressa, G.F.: Accelerated fitted operator finite difference method for singularly perturbed delay differential equations with non-local boundary condition. J. Egypt. Math. Soc. 28, 1–16 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Debela, H.G., Duressa, G.F. Accelerated exponentially fitted operator method for singularly perturbed problems with integral boundary condition. Int. J. Differ. Equ. 2020; Article ID 9268181, 8 pages

  20. Doolan, E.P., Miller, J.J.H., Schilders, W.H.A.: Uniform Numerical Method for Problems with Initial and Boundary Layers. Boole Press, Dublin (1980)

    MATH  Google Scholar 

  21. Du, Z., Kong, L.: Asymptotic solutions of singularly perturbed second-order differential equations and application to multi-point boundary value problems. Appl. Math. Lett. 23(9), 980–983 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Farell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust Computational Techniques for Boundary Layers. Chapman Hall/CRC, New York (2000)

    Book  MATH  Google Scholar 

  23. Herceg, D., Surla, K.: Solving a nonlocal singularly perturbed nonlocal problem by splines in tension. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mathematics 21(2), 119–132 (1991)

  24. Il’in, V.A., Moiseev, E.I.: Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects. Differ. Equ. 23(7), 803–810 (1987)

    MATH  Google Scholar 

  25. Il’in, V.A., Moiseev, E.I.: Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator. Differ. Equ. 23, 979–987 (1987)

    MathSciNet  MATH  Google Scholar 

  26. Jankowski, T.: Existence of solutions of differential equations with nonlinear multipoint boundary conditions. Comput. Math. Appl. 47, 1095–1103 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kadalbajoo, M.K., Gupta, V.: A brief of survey on numerical methods for solving singularly perturbed problems. Appl. Math. Comput. 217, 3641–3716 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Kevorkian, J., Cole, J.D.: Multiple Scale and Singular Perturbation Methods. Springer, New York (1996)

    Book  MATH  Google Scholar 

  29. Kudu, M., Amiraliyev, G.M.: Finite difference method for a singularly perturbed differential equations with integral boundary condition. Int. J. Math. Comput. 26(3), 72–79 (2015)

    MathSciNet  Google Scholar 

  30. Kumar, M., Singh, P., Misra, H.K.: A recent survey on computational techniques for solving singularly perturbed boundary value problems. Int. J. Comput. Math. 84(10), 1439–1463 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kumar, V., Srinivasan, B.: An adaptive mesh strategy for singularly perturbed convection diffusion problems. Appl. Math. Model. 39, 2081–2091 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kumar, M., Rao, C.S.: Higher order parameter-robust numerical method for singularly perturbed reaction–diffusion problems. Appl. Math. Comput. 216, 1036–1046 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Linss, T.: Layer-adapted meshes for convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 192, 1061–1105 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nayfeh, A.H.: Perturbation Methods. Wiley, New York (1985)

    MATH  Google Scholar 

  35. O’Malley, R.E.: Singular Perturbation Methods for Ordinary Differential Equations. Springer, New York (1991)

    Book  MATH  Google Scholar 

  36. Petrovic, N.: On a uniform numerical method for a nonlocal problem. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mathematics 21(2), 133–140 (1991)

  37. Roos, H.G., Stynes, M., Tobiska, L.: Robust Numerical Methods Singularly Perturbed Differential Equations. Springer, Berlin (2008)

    MATH  Google Scholar 

  38. Sapagovas, M., Ciegis, R.: Numerical solution of nonlocal problems (in Russian). Lietuvas Matematica Rink 27, 348–356 (1987)

    Google Scholar 

  39. Smith, D.R.: Singular Perturbation Theory. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  40. Zheng, Q., Li, X., Gao, Y.: Uniformly convergent hybrid schemes for solutions and derivatives in quasilinear singularly perturbed BVPs. Appl. Numer. Math. 91, 46–59 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musa Cakir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cakir, M., Amiraliyev, G.M. A second order numerical method for singularly perturbed problem with non-local boundary condition. J. Appl. Math. Comput. 67, 919–936 (2021). https://doi.org/10.1007/s12190-021-01506-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01506-z

Keywords

Mathematics Subject Classification

Navigation