Skip to main content
Log in

Existence of periodic solutions of a continuous flow bioreactor model with impulsive control in microorganisms

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we aim to investigate the dynamics and existence of periodic solutions of a state-dependent impulsive model for continuous flow bioreactors. In this model, the Monod’s growth rate is employed and an impulsive control strategy is used to control the quantity of microorganisms. Our study shows all solutions of the model are bounded; and the order-1 periodic solution exists under certain conditions. At the end of this paper, numerical simulations have been carried out to demonstrate our theoretical results and the performance of the bioreactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Monod, J.: La technique de culture continue: Thorie et applications. Ann. l’Inst. Pasteur 79(4), 390–410 (1950)

    Google Scholar 

  2. Smith, H., Waltman, P.: The Theory of the Chemostat. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  3. Nelson, M., Balakrishnan, E., Sidhu, H.: A fundamental analysis of continuous flow bioreactor and membrane reactor models with tessier kinetics. Chem. Eng. Commun. 199(3), 417–433 (2012)

    Article  Google Scholar 

  4. Schulze, K., Lipe, R.: Relationship between substrate concentration, growth rate, and respiration rate of Escherichia coli in continuous culture. Arch. Microbiol. 48(1), 1–20 (1964)

    Google Scholar 

  5. Sonmezisik, M., Tanyolac, D., Seker, S., Tanyolac, A.: The double-substrate growth kinetics of sulfolobus solfataricus, a thermophilic sulfur-removing archeabacterium. Biochem. Eng. J. 1(3), 243–248 (1998)

    Article  Google Scholar 

  6. Zhang, T.: Global analysis of continuous flow bioreactor and membrane reactor models with death and maintenance. J. Math. Chem. 50(8), 2239–2247 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Nelson, M., Kerr, T., Chen, X.: A fundamental analysis of continuous flow bioreactor and membrane reactor models with death and maintenance included. J. Chem. Eng. 3(1), 70–80 (2008)

    Google Scholar 

  8. Wolkowicz, G., Lu, Z.: Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates. SIAM J. Appl. Math. 52(1), 1–12 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pirt, S.: The maintenance energy of bacteria in growing cultures. Proc. R. Soc. Lond. Ser-B 163, 224–231 (1965)

    Article  Google Scholar 

  10. Liu, X.: Stability results for impulsive diffrential systems with applications to population growth models. Dyn. Stabil. Syst. 9(2), 163–174 (1994)

    Google Scholar 

  11. Liu, X., Chen, L.: Complex dynamics of holling type II Lotka-Volterra predatorprey system with impulsive perturbations on the predator. Chaos Solitons Fract. 16(2), 311–320 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Angelova, J., Dishliev, A.: Optimization problems for one-impulsive models from population dynamics. Nonlinear Anal. TMA 39(4), 483–497 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, X., Chen, L.: Global dynamics of the periodic logistic system with periodic impulsive perturbations. J. Math. Anal. Appl. 289(1), 279–291 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tang, S., Chen, L.: Impulsive semi-dynamical systems with applications in biological management (the doctor degree’s article). Chinese Academy of Science (2003)

  15. Wang, T., Chen, L.: Global analysis of a three-dimensional delayed Michaelic-Menten chemostat-type models with pulsed input. J. Appl. Math. Comput. 35(1–2), 211–227 (2011)

    Article  MATH  Google Scholar 

  16. Guo, H., Chen, L.: Qualitative analysis of a variable yield turbidostat model with impulsive state feedback control. J. Appl. Math. Comput. 33(1–2), 193–208 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, T., Meng, X., Song, Y., Zhang, T.: A stage-structured predator-prey SI model with disease in the prey and impulsive effects. Math. Model. Anal. 18(4), 505–528 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, T., Meng, X., Liu, R., Zhang, T.: Periodic solution of a pest management Gompertz model with impulsive state feedback control. Nonlinear Dyn. 78(2), 921–938 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, L.: Pest control and geometric theory of semi-continuous dynamical system. J. Beihua Univ. 12, 1–9 (2011)

    Google Scholar 

  20. Zeng, G., Chen, L., Sun, L.: Existence of periodic solution of order one of planar impulsive autonomous system. J. Comput. Appl. Math. 186(2), 466–481 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nelson, M.I., Balakrishnan, E., Sidhu, H., Chen, X.: A fundamental analysis of continuous flow bioreactor models and membrane reactor models to process industrial wastewaters. Chem. Eng. J. 140, 521–528 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonghua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Zhang, T., Tadé, M.O. et al. Existence of periodic solutions of a continuous flow bioreactor model with impulsive control in microorganisms. J. Appl. Math. Comput. 53, 471–486 (2017). https://doi.org/10.1007/s12190-015-0977-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-015-0977-4

Keywords

Mathematics Subject Classification

Navigation