Skip to main content
Log in

Global asymptotical stability for a diffusive predator–prey system with Beddington–DeAngelis functional response and nonlocal delay

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

A diffusive predator–prey system with Beddington–DeAngelis functional response and nonlocal delay is considered in this work. Sufficient conditions for the global asymptotical stability of the unique positive equilibrium of the system are derived by constructing new recurrent sequences which are different from Duque and Lizana’s paper and using an iterative method. It is shown that our result supplements and complements one of the main results of Duque and Lizana’s paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanner, J.T.: The stability and the intrinsic growth rates of prey and predator populations. Ecology 56, 855–867 (1975)

    Article  Google Scholar 

  2. Wollkind, D.J., Collings, J.B., Logan, J.A.: Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit flies. Bull. Math. Biol. 50, 379–409 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Saez, E., Gonzalez-Olivares, E.: Dynamics of a predator-prey model. SIAM J. Appl. Math. 59, 1867–1878 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hassell, M.P.: The Dynamics of Arthropod Predator-Prey Systems. Princeton University Press, Princeton (1978)

    MATH  Google Scholar 

  5. Yang, W.S.: Global asymptotical stability and persistent property for a diffusive predator–prey system with modified Leslie–Gower functional response. Nonlinear Anal. Real World Appl. 14, 1323–1330 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hsu, S.B., Hwang, T.W.: Global stability for a class of predator-prey systems. SIAM J. Appl. Math. 55, 763–783 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hsu, S.B., Hwang, T.W., Kuang, Y.: Global analysis of the Michaelis–Menten-type ratio-dependent predator-prey system. J. Math. Biol. 42, 489–506 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Shi, H.B., Li, W.T., Lin, G.: Positive steady states of a diffusive predator-prey system with modified Holling–Tanner functional response. Nonlinear Anal. Real World Appl. 11, 3711–3721 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duque, C., Lizana, M.: Global asymptotic stability of a ratio dependent predator-prey system with diffusion and delay. Period. Math. Hung. 56, 11–23 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, Y., Cao, J.D., et al.: Effect of time delay on pattern dynamics in a spatial epidemic model. Phys. A 412, 137–148 (2014)

    Article  MathSciNet  Google Scholar 

  11. Boshaba, K., Ruan, S.: Instability in diffusive ecological models with nonlocal delay effects. J. Math. Anal. Appl. 258, 269–286 (2001)

    Article  MathSciNet  Google Scholar 

  12. Xu, R.: A reaction diffusion predator-prey model with stage structure and non local delay. Appl. Math. Comput. 175, 984–1006 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fan, M., Wang, K.: Global existence of positive periodic solutions of periodic predator-prey system infinity delay. J. Math. Anal. Appl. 262, 1–11 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kar, T.K.: Selective harvesting in a prey-predator fishery with time delay. Math. Comput. Model. 38, 449–458 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cosner, C., DeAngelis, D.L., Ault, J.S., Olson, D.B.: Effects of spatial grouping on the functional response of predators. Theor. Popul. Biol. 56, 65–75 (1999)

    Article  MATH  Google Scholar 

  16. Kuang, Y., Baretta, E.: Global qualitative analysis of a ratio-dependent predator-prey system. J. Math. Biol. 36, 389–406 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Aziz-Alaoui, M.A., Daher Okiye, M.: Boundeness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes. Appl. Math. Lett. 16, 1069–1075 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nindjin, A.F., Aziz-Alaoui, M.A., Cadivel, M.: Analysis of a predator-prey model with modified Leslie–Gower and Holling-type II schemes with delay. Nonlinear Anal. Real World Appl. 7, 1104–1118 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ko, W., Ryu, K.: Qualitative analysis of a predator–prey model with Holling type II functional response incorporating a prey refuge. J. Differ. Equ. 231, 534–550 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lindstrom, T.: Global stability of a model for competing predators: an extension of the Aradito and Ricciardi Lyapunov function. Nonlinear Anal. 39, 793–805 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peng, R., Wang, M.X.: Note on a ratio-dependent predator-prey system with diffusion. Nonlinear Anal. Real World Appl. 7, 1–11 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, M.X.: Nonlinear Parabolic Equation of Parabolic Type (in Chinese). Science Press, Beijing (1993)

    Google Scholar 

  23. Yamada, Y.: Global solution for quasilinear parabolic systems with cross-diffusion effects. Nonlinear Anal. TMA 24, 1395–1412 (1995)

    Article  MATH  Google Scholar 

  24. Ye, Q., Li, Z.: Introduction to Reaction-Diffusion Equations. Science Press, Beijing (1990)

    MATH  Google Scholar 

  25. Pao, C.V.: Dynamics of nonlinear parabolic systems with time delays. J. Math. Anal. Appl. 198, 751–779 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Smoller, J.: Shock Waves and Reaction-Diffusion Equation, 2nd edn. Springer, New York (1994)

    Book  MATH  Google Scholar 

  27. Ko, W., Ryu, K.: Non-constant positive steady-states of a diffusive predator-prey system in homogeneous environment. J. Math. Anal. Appl. 327, 539–549 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Peng, R., Wang, M.X.: Global stability of the equilibrium of a diffusive Holling–Tanner prey-predator model. Appl. Math. Lett. 20, 664–670 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, S.S., Shi, J.P.: Global stability in a diffusive Holling–Tanner predator–prey model. Appl. Math. Lett. 25, 614–618 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, J.J., Gao, W.J.: A strongly coupled predator–prey system with modified Holling–Tanner functional response. Comput. Math. Appl. 60, 1908–1916 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu, C., Boyce, M.S.: Dynamic complexities in a mutual interference host–parasitoid model. Chaos Soliton Fractals 24, 175–182 (2004)

    Article  MATH  Google Scholar 

  32. Pal, P.J., Mandal, P.K.: Bifurcation analysis of a modified Leslie–Gower predator–prey model with Beddington–DeAngelis functional response and strong Allee effect. Math. Comput. Simul. 97, 123–146 (2014)

    Article  MathSciNet  Google Scholar 

  33. Walter, W.: Differential inequalities and maximum principles: theory, new methods and applications. Nonlinear Anal. TMA 30, 4695–4711 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of China (11102041, 11201072), the Natural Science Foundation of Fujian Province (2012J01002, 2014J01003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensheng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Li, X. Global asymptotical stability for a diffusive predator–prey system with Beddington–DeAngelis functional response and nonlocal delay. J. Appl. Math. Comput. 50, 327–347 (2016). https://doi.org/10.1007/s12190-015-0873-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-015-0873-y

Keywords

Mathematics Subject Classification

Navigation