Skip to main content
Log in

Histone deacetylase inhibitors induce leukemia gene expression in cord blood hematopoietic stem cells expanded ex vivo

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Umbilical cord blood is a valuable source of hematopoietic stem cells. While cytokine stimulation can induce ex vivo hematopoietic cell proliferation, attempts have been made to use epigenetic-modifying agents to facilitate stem cell expansion through the modulation of cellular epigenetic status. However, the potential global effect of these modifying agents on epigenome raises concerns about the functional normality of the expanded cells. We studied the ex vivo expansion of cord blood hematopoietic stem and progenitor cells (HSPCs) by histone deacetylase (HDAC) inhibitors, trichostatin A and valproic acid. Treatment with HDAC inhibitors resulted in mild expansion of the total hematopoietic cell number when compared with cytokine stimulated sample. Nevertheless, we observed 20–30-fold expansion of the CD34+ CD38 HSPC population. Strikingly, cord blood cells cultured with HDAC inhibitors exhibited aberrant expression of leukemia-associated genes, including CDKN1C, CEBPα, HOXA9, MN1, and DLK1. Our results thus suggest that the expansion of HSPCs by this approach may provoke a pre-leukemic cell state. We propose that the alteration of epigenome by HDAC inhibitors readily expands cord blood HSPC population through the re-activation of the leukemia gene transcription. The present study provides an assessment of the leukemogenic potential of HSCs expanded ex vivo using HDAC inhibitors for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yoder MC. Cord blood banking and transplantation: advances and controversies. Curr Opin Pediatr. 2014;26:163–8.

    Article  PubMed  Google Scholar 

  2. de Lima M, McNiece I, Robinson SN, Munsell M, Eapen M, Horowitz M, et al. Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N Engl J Med. 2012;367:2305–15.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Robinson SN, Ng J, Niu T, Yang H, McMannis JD, Karandish S, et al. Superior ex vivo cord blood expansion following co-culture with bone marrow-derived mesenchymal stem cells. Bone Marrow Transplant. 2006;37:359–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. DiGiusto DL, Lee R, Moon J, Moss K, O’Toole T, Voytovich A, et al. Hematopoietic potential of cryopreserved and ex vivo manipulated umbilical cord blood progenitor cells evaluated in vitro and in vivo. Blood. 1996;87:1261–71.

    CAS  PubMed  Google Scholar 

  5. Levac K, Karanu F, Bhatia M. Identification of growth factor conditions that reduce ex vivo cord blood progenitor expansion but do not alter human repopulating cell function in vivo. Haematologica. 2005;90:166–72.

    CAS  PubMed  Google Scholar 

  6. Shpall EJ, Quinones R, Giller R, Zeng C, Baron AE, Jones RB, et al. Transplantation of ex vivo expanded cord blood. Biol Blood Marrow Transplant. 2002;8:368–76.

    Article  PubMed  Google Scholar 

  7. Delaney C, Heimfeld S, Brashem-Stein C, Voorhies H, Manger RL, Bernstein ID. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med. 2010;16:232–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hofmeister CC, Zhang J, Knight KL, Le P, Stiff PJ. Ex vivo expansion of umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic niche. Bone Marrow Transplant. 2007;39:11–23.

    Article  CAS  PubMed  Google Scholar 

  9. Jaroscak J, Goltry K, Smith A, Waters-Pick B, Martin PL, Driscoll TA, et al. Augmentation of umbilical cord blood (UCB) transplantation with ex vivo-expanded UCB cells: results of a phase 1 trial using the AastromReplicell System. Blood. 2003;101:5061–7.

    Article  CAS  PubMed  Google Scholar 

  10. Pecora AL, Stiff P, Jennis A, Goldberg S, Rosenbluth R, Price P, et al. Prompt and durable engraftment in two older adult patients with high risk chronic myelogenous leukemia (CML) using ex vivo expanded and unmanipulated unrelated umbilical cord blood. Bone Marrow Transplant. 2000;25:797–9.

    Article  CAS  PubMed  Google Scholar 

  11. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Araki H, Mahmud N, Milhem M, Nunez R, Xu M, Beam CA, et al. Expansion of human umbilical cord blood SCID-repopulating cells using chromatin-modifying agents. Exp Hematol. 2006;34:140–9.

    Article  CAS  PubMed  Google Scholar 

  13. Araki H, Yoshinaga K, Boccuni P, Zhao Y, Hoffman R, Mahmud N. Chromatin-modifying agents permit human hematopoietic stem cells to undergo multiple cell divisions while retaining their repopulating potential. Blood. 2007;109:3570–8.

    Article  CAS  PubMed  Google Scholar 

  14. Chaurasia P, Gajzer DC, Schaniel C, D’Souza S, Hoffman R. Epigenetic reprogramming induces the expansion of cord blood stem cells. J Clin Invest. 2014;124:2378–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mahmud N, Petro B, Baluchamy S, Li X, Taioli S, Lavelle D, et al. Differential effects of epigenetic modifiers on the expansion and maintenance of human cord blood stem/progenitor cells. Biol Blood Marrow Transplant. 2014;20:480–9.

    Article  CAS  PubMed  Google Scholar 

  16. Holloway AF, Oakford PC. Targeting epigenetic modifiers in cancer. Curr Med Chem. 2007;14:2540–7.

    Article  CAS  PubMed  Google Scholar 

  17. Quintas-Cardama A, Santos FP, Garcia-Manero G. Histone deacetylase inhibitors for the treatment of myelodysplastic syndrome and acute myeloid leukemia. Leukemia. 2011;25:226–35.

    Article  CAS  PubMed  Google Scholar 

  18. Coyle TE, Bair AK, Stein C, Vajpayee N, Mehdi S, Wright J. Acute leukemia associated with valproic acid treatment: a novel mechanism for leukemogenesis? Am J Hematol. 2005;78:256–60.

    Article  CAS  PubMed  Google Scholar 

  19. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150:12–27.

    Article  CAS  PubMed  Google Scholar 

  20. Ayton PM, Cleary ML. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene. 2001;20:5695–707.

    Article  CAS  PubMed  Google Scholar 

  21. Ida K, Kitabayashi I, Taki T, Taniwaki M, Noro K, Yamamoto M, et al. Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;q13). Blood. 1997;90:4699–704.

    CAS  PubMed  Google Scholar 

  22. Lui WC, Chan YF, Chan LC, Ng RK. Cytokine combinations on the potential for ex vivo expansion of murine hematopoietic stem cells. Cytokine. 2014;68:127–32.

    Article  CAS  PubMed  Google Scholar 

  23. Borriello A, Caldarelli I, Bencivenga D, Criscuolo M, Cucciolla V, Tramontano A, et al. p57(Kip2) and cancer: time for a critical appraisal. Mol Cancer Res. 2011;9:1269–84.

    Article  CAS  PubMed  Google Scholar 

  24. Bokelmann I, Mahlknecht U. Valproic acid sensitizes chronic lymphocytic leukemia cells to apoptosis and restores the balance between pro- and antiapoptotic proteins. Mol Med. 2008;14:20–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kawagoe R, Kawagoe H, Sano K. Valproic acid induces apoptosis in human leukemia cells by stimulating both caspase-dependent and -independent apoptotic signaling pathways. Leuk Res. 2002;26:495–502.

    Article  CAS  PubMed  Google Scholar 

  26. Lagneaux L, Gillet N, Stamatopoulos B, Delforge A, Dejeneffe M, Massy M, et al. Valproic acid induces apoptosis in chronic lymphocytic leukemia cells through activation of the death receptor pathway and potentiates TRAIL response. Exp Hematol. 2007;35:1527–37.

    Article  CAS  PubMed  Google Scholar 

  27. Lawrence HJ, Christensen J, Fong S, Hu YL, Weissman I, Sauvageau G, et al. Loss of expression of the Hoxa-9 homeobox gene impairs the proliferation and repopulating ability of hematopoietic stem cells. Blood. 2005;106:3988–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thorsteinsdottir U, Mamo A, Kroon E, Jerome L, Bijl J, Lawrence HJ, et al. Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood. 2002;99:121–9.

    Article  CAS  PubMed  Google Scholar 

  29. Hu YL, Fong S, Ferrell C, Largman C, Shen WF. HOXA9 modulates its oncogenic partner Meis1 to influence normal hematopoiesis. Mol Cell Biol. 2009;29:5181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Collins C, Wang J, Miao H, Bronstein J, Nawer H, Xu T, et al. C/EBPalpha is an essential collaborator in Hoxa9/Meis1-mediated leukemogenesis. Proc Natl Acad Sci USA. 2014;111:9899–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ohlsson E, Hasemann MS, Willer A, Lauridsen FK, Rapin N, Jendholm J, et al. Initiation of MLL-rearranged AML is dependent on C/EBPalpha. J Exp Med. 2014;211:5–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barcellos-Hoff MH, Lyden D, Wang TC. The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer. 2013;13:511–8.

    Article  CAS  PubMed  Google Scholar 

  33. Heuser M, Argiropoulos B, Kuchenbauer F, Yung E, Piper J, Fung S, et al. MN1 overexpression induces acute myeloid leukemia in mice and predicts ATRA resistance in patients with AML. Blood. 2007;110:1639–47.

    Article  CAS  PubMed  Google Scholar 

  34. Kramer OH, Zhu P, Ostendorff HP, Golebiewski M, Tiefenbach J, Peters MA, et al. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J. 2003;22:3411–20.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Heideman MR, Lancini C, Proost N, Yanover E, Jacobs H, Dannenberg JH. Sin3a-associated Hdac1 and Hdac2 are essential for hematopoietic stem cell homeostasis and contribute differentially to hematopoiesis. Haematologica. 2014;99:1292–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Summers AR, Fischer MA, Stengel KR, Zhao Y, Kaiser JF, Wells CE, et al. HDAC3 is essential for DNA replication in hematopoietic progenitor cells. J Clin Investig. 2013;123:3112–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the Faculty Core Facility of the University of Hong Kong Li Ka Shing Faculty of Medicine for assistance with the flow cytometry analyses. This work was supported by the HKU Seed Funding Programme for Basic Research (Project no. 200811159211) and Health and Medical Research Fund from the Hong Kong Special Administrative Region, China (Project no. 02132436).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray Kit Ng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, Y.M., Chan, Y.F., Chan, L.C. et al. Histone deacetylase inhibitors induce leukemia gene expression in cord blood hematopoietic stem cells expanded ex vivo. Int J Hematol 105, 37–43 (2017). https://doi.org/10.1007/s12185-016-2075-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-016-2075-2

Keywords

Navigation