Skip to main content

Advertisement

Log in

Prediction model for CD34 positive cell yield in peripheral blood stem cell collection on the fourth day after G-CSF administration in healthy donors

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Allogeneic peripheral blood stem cell transplantation (PBSCT) is an indispensable treatment option for hematological malignancy. The optimal collection day after granulocyte colony-stimulating factor (G-CSF) administration should be determined by peripheral blood pre-apheresis CD34 positive (CD34+) cell percentage. However, pre-apheresis CD34+ cell analysis is not available for most institutions in Japan. Prediction of the optimal collection day based on objective parameters, other than direct CD34+ cell count, is thus an important matter for investigation. To identify potential predictive factors, clinical parameters in 79 related donors who received allogeneic peripheral blood stem cell (PBSC) collection were analyzed. Eight factors were significantly correlated with the number of CD34+ cells per donor body weight on the fourth day (day 4) after G-CSF administration in univariate analysis. Using multi-regression analysis, we made a simple scoring system comprising age, sex, LDH on day 4 and RBC count at the baseline, which significantly predicted CD34+ cell yield (P = 0.048). This system allows us to determine the optimal PBSC collection day. When the score is 0 or 1 on day 4, starting apheresis on day 5 potentially helps avoiding the need for multiple harvests. Score 3 or 4 on day 4 is indicative of better performance if apheresis is started on day 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Koreth J, Schlenk R, Kopecky KJ, Honda S, Sierra J, Djulbegovic BJ, et al. Allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission: systematic review and meta-analysis of prospective clinical trials. JAMA. 2009;301:2349–61.

    Article  PubMed  CAS  Google Scholar 

  2. Yagasaki H, Kojima S, Yabe H, Kato K, Kigasawa H, Sakamaki H, et al. Acceptable HLA-mismatching in unrelated donor bone marrow transplantation for patients with acquired severe aplastic anemia. Blood. 2011;118:3186–90.

    Article  PubMed  CAS  Google Scholar 

  3. Izutsu K, Kanda Y, Ohno H, Sao H, Ogawa H, Miyazaki Y, et al. Unrelated bone marrow transplantation for non-Hodgkin lymphoma: a study from the Japan Marrow Donor Program. Blood. 2004;103:1955–60.

    Article  PubMed  CAS  Google Scholar 

  4. Gratwohl A, Baldomero H, Schwendener A, Rocha V, Apperley J, Frauendorfer K, et al. The EBMT activity survey 2007 with focus on allogeneic HSCT for AML and novel cellular therapies. Bone Marrow Transplant. 2009;43:275–91.

    Article  PubMed  CAS  Google Scholar 

  5. Moog R. Apheresis techniques for collection of peripheral blood progenitor cells. Transfus Apher Sci. 2004;31:207–20.

    Article  PubMed  Google Scholar 

  6. Tigue CC, McKoy JM, Evens AM, Trifilio SM, Tallman MS, Bennett CL. Granulocyte-colony stimulating factor administration to healthy individuals and persons with chronic neutropenia or cancer: an overview of safety considerations from the Research on Adverse Drug Events and Reports project. Bone Marrow Transplant. 2007;40:185–92.

    Article  PubMed  CAS  Google Scholar 

  7. Stroncek DF, Clay ME, Petzoldt ML, Smith J, Jaszcz W, Oldham FB, et al. Treatment of normal individuals with granulocyte-colony-stimulating factor: donor experiences and the effects on peripheral blood CD34+ cell counts and on the collection of peripheral blood stem cells. Transfusion. 1996;36:601–10.

    Article  PubMed  CAS  Google Scholar 

  8. Anderlini P, Körbling M, Dale D, Gratwohl A, Schmitz N, Stroncek D, et al. Allogeneic blood stem cell transplantation: considerations for donors. Blood. 1997;90:903–8.

    PubMed  CAS  Google Scholar 

  9. Falzetti F, Aversa F, Minelli O, Tabilio A. Spontaneous rupture of spleen during peripheral blood stem-cell mobilisation in a healthy donor. Lancet. 1999;353:555.

    Article  PubMed  CAS  Google Scholar 

  10. Tjønnfjord GE, Steen R, Evensen SA, Thorsby E, Egeland T. Characterization of CD34+ peripheral blood cells from healthy adults mobilized by recombinant human granulocyte colony-stimulating factor. Blood. 1994;84:2795–801.

    PubMed  Google Scholar 

  11. Sekhsaria S, Fleisher TA, Vowells S, Brown M, Miller J, Gordon I, et al. Granulocyte colony-stimulating factor recruitment of CD34+ progenitors to peripheral blood: impaired mobilization in chronic granulomatous disease and adenosine deaminase—deficient severe combined immunodeficiency disease patients. Blood. 1996;88:1104–12.

    PubMed  CAS  Google Scholar 

  12. Dreger P, Haferlach T, Eckstein V, Jacobs S, Suttorp M, Löffler H, et al. G-CSF-mobilized peripheral blood progenitor cells for allogeneic transplantation: safety, kinetics of mobilization, and composition of the graft. Br J Haematol. 1994;87:609–13.

    Article  PubMed  CAS  Google Scholar 

  13. Guideline for allogeneic peripheral blood stem cell collection from unrelated donors. 2010 [cited 2013 Feb]. http://www.jmdp.or.jp/documents/file/04_medical/f-up03a.pdf.

  14. Bender JG, To LB, Williams S, Schwartzberg LS. Defining a therapeutic dose of peripheral blood stem cells. J Hematother. 1992;1:329–41.

    Article  PubMed  CAS  Google Scholar 

  15. Tricot G, Jagannath S, Vesole D, Nelson J, Tindle S, Miller L, et al. Peripheral blood stem cell transplants for multiple myeloma: identification of favorable variables for rapid engraftment in 225 patients. Blood. 1995;85:588–96.

    PubMed  CAS  Google Scholar 

  16. Negrin RS, Kusnierz-Glaz CR, Still BJ, Schriber JR, Chao NJ, Long GD, et al. Transplantation of enriched and purged peripheral blood progenitor cells from a single apheresis product in patients with non-Hodgkin’s lymphoma. Blood. 1995;85:3334–41.

    PubMed  CAS  Google Scholar 

  17. Anguita-Compagnon AT, Dibarrart MT, Palma J, Paredes L, Mosso C, Montalva R, et al. Mobilization and collection of peripheral blood stem cells: guidelines for blood volume to process, based on CD34-positive blood cell count in adults and children. Transplant Proc. 2010;42:339–44.

    Article  PubMed  CAS  Google Scholar 

  18. Endo-Matsubara M, Ogawa S, Sasaki K, Takahashi T, Chiba S, Hirai H. Immature granulocyte fraction in the peripheral blood is a practical indicator for mobilization of CD34(+) cells. Am J Hematol. 2004;77:223–8.

    Article  PubMed  Google Scholar 

  19. Cytometry, S.o.F. Report of the Hematology Standardization Committee Guidelines for CD34+ Cell Determination by Flow Cytometry (JCCLS H3-P V1.0). 2007 [cited 2013 20th, February]; http://www.jccls.org/techreport/fct_h3pv1.pdf.

  20. Sutherland DR, Anderson L, Keeney M, Nayar R, Chin-Yee I. The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J Hematother. 1996;5:213–26.

    Article  PubMed  CAS  Google Scholar 

  21. Passos-Coelho JL, Braine HG, Davis JM, Huelskamp AM, Schepers KG, Ohly K, et al. Predictive factors for peripheral-blood progenitor-cell collections using a single large-volume leukapheresis after cyclophosphamide and granulocyte-macrophage colony-stimulating factor mobilization. J Clin Oncol. 1995;13:705–14.

    PubMed  CAS  Google Scholar 

  22. Elliott C, Samson DM, Armitage S, Lyttelton MP, McGuigan D, Hargreaves R, et al. When to harvest peripheral-blood stem cells after mobilization therapy: prediction of CD34-positive cell yield by preceding day CD34-positive concentration in peripheral blood. J Clin Oncol. 1996;14:970–3.

    PubMed  CAS  Google Scholar 

  23. de la Rubia J, Lorenzo JI, Torrabadella M, Marín P, Insunza A, Sanz MA. Basal CD34(+) cell count predicts peripheral blood progenitor cell mobilization and collection in healthy donors after administration of granulocyte colony-stimulating factor. Haematologica. 2004;89:1530–2.

    PubMed  Google Scholar 

  24. Okano A, Ashihara E, Shimazaki C, Uchiyama H, Inaba T, Taniguchi K, et al. Predictive parameters for granulocyte colony-stimulating factor-induced peripheral blood stem cell mobilization. J Clin Apher. 2008;23:171–7.

    Article  PubMed  Google Scholar 

  25. Suzuya H, Watanabe T, Nakagawa R, Watanabe H, Okamoto Y, Onishi T, et al. Factors associated with granulocyte colony-stimulating factor-induced peripheral blood stem cell yield in healthy donors. Vox Sang. 2005;89:229–35.

    Article  PubMed  CAS  Google Scholar 

  26. Kozuka T, Ikeda K, Teshima T, Yoshida C, Shinagawa K, Kojima K, et al. Peripheral blood circulating immature cell counts predict CD34+ cell yields in G-CSF-induced PBPC mobilization in healthy donors. Transfusion. 2004;44:526–32.

    Article  PubMed  Google Scholar 

  27. Namba N, Matsuo K, Kubonishi S, Kikuchi T, Maeda Y, Niiya M, et al. Prediction of number of apheresis procedures necessary in healthy donors to attain minimally required peripheral blood CD34+ cells. Transfusion. 2009;49:2384–9.

    Article  PubMed  Google Scholar 

  28. Grigg AP, Roberts AW, Raunow H, Houghton S, Layton JE, Boyd AW, et al. Optimizing dose and scheduling of filgrastim (granulocyte colony-stimulating factor) for mobilization and collection of peripheral blood progenitor cells in normal volunteers. Blood. 1995;86:4437–45.

    PubMed  CAS  Google Scholar 

  29. Moncada V, Bolan C, Yau YY, Leitman SF. Analysis of PBPC cell yields during large-volume leukapheresis of subjects with a poor mobilization response to filgrastim. Transfusion. 2003;43:495–501.

    Article  PubMed  Google Scholar 

  30. Stiff PJ. Management strategies for the hard-to-mobilize patient. Bone Marrow Transplant. 1999;23(Suppl 2):S29–33.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the technical assistance of all the staff of the Department of Transfusion Medicine and the Department of Clinical Laboratory, in especial to Ms. Mika Matsuhashi, Ms. Yuuko Mishima, Mr. Masahiro Johna, and Mr. Naoyuki Yoshikawa.

Conflict of interest

The authors declare that they have no conflicts of interest relevant to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Hirokazu Tsuno.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 12 kb)

About this article

Cite this article

Yoshizato, T., Watanabe-Okochi, N., Nannya, Y. et al. Prediction model for CD34 positive cell yield in peripheral blood stem cell collection on the fourth day after G-CSF administration in healthy donors. Int J Hematol 98, 56–65 (2013). https://doi.org/10.1007/s12185-013-1366-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-013-1366-0

Keywords

Navigation