Skip to main content

Advertisement

Log in

Lateral and Oblique Lumbar Interbody Fusion—Current Concepts and a Review of Recent Literature

  • Minimally Invasive Spine Surgery (W Hsu, Section Editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose

To review the relevant recent literature regarding minimally invasive, lateral, and oblique approaches to the anterior lumbar spine, with a particular focus on the operative and postoperative complications.

Methods

A literature search was performed on Pubmed and Web of Science using combinations of the following keywords and their acronyms: lateral lumbar interbody fusion (LLIF), oblique lateral interbody fusion (OLIF), anterior-to-psoas approach (ATP), direct lateral interbody fusion (DLIF), extreme lateral interbody fusion (XLIF), and minimally invasive surgery (MIS). All results from January 2016 through January 2019 were evaluated and all studies evaluating complications and/or outcomes were included in the review.

Recent Findings

Transient neurological deficit, particularly sensorimotor symptoms of the ipsilateral thigh, remains the most common complication seen in LLIF. Best available current literature demonstrates that approximately 30–40% of patients have postoperative deficits, primarily of the proximal leg. Permanent symptoms are less common, affecting 4–5% of cases. Newer techniques to reduce this rate include different retractors, direct visualization of the nerves, and intraoperative neuromonitoring. OLIF may have lower deficit rates, but the available literature is limited. Subsidence rates in both LLIF and OLIF are comparable to ALIF (anterior lumbar interbody fusion), but further study is required. Supplemental posterior fixation is an active area of investigation that shows favorable biomechanical results, but additional clinical studies are needed.

Summary

Minimally invasive lumbar interbody fusion techniques continue to advance rapidly. As these techniques continue to mature, evidence-based risk-stratification systems are required to better guide both the patient and clinician in the joint decision-making process for the optimal surgical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mobbs, R., Phan, K., Malham, G., Seex, K., Rao,P. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. Journal of Spine Surgery 2015; 1:2–18.

  2. Silvestre C, Mac-Thiong J, Hilmi R, Roussouly P. Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lumbar interbody fusion in 179 patients. Asian Spine J. 2012;6:89–97. https://doi.org/10.4184/asj.2012.6.2.89.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Goyal A, Kerezoudis P, Alvi MA, Goncalves S, Bydon M. Outcomes following minimally invasive lateral transpsoas interbody fusion for degenerative low grade lumbar spondylolisthesis: a systematic review. Clin Neurol Neurosurg. 2018;167:122–8. https://doi.org/10.1016/j.clineuro.2018.02.020.

    Article  PubMed  Google Scholar 

  4. Ahmadian A, Deukmedjian AR, Abel N, Dakwar E, Uribe JS. Analysis of lumbar plexopathies and nerve injury after lateral retroperitoneal transpsoas approach: diagnostic standardization a review. J Neurosurg -Spine. 2013;18:289–97. https://doi.org/10.3171/2012.11.SPINE12755.

    Article  PubMed  Google Scholar 

  5. Pimenta L, Figueredo F, DaSilva M. The lateral endoscopic transpsoas retroperitoneal approach (LETRA): a new technique for accessing the lumbar spine. AANS/CNS joint section on disorders of the spine and peripheral nerves. San Diego, CA; 2004.

  6. Cummock MD, Vanni S, Levi AD, Yu Y, Wang MY. An analysis of postoperative thigh symptoms after minimally invasive transpsoas lumbar interbody fusion. J Neurosurg -Spine. 2011;15:11–8. https://doi.org/10.3171/2011.2.SPINE10374.

    Article  PubMed  Google Scholar 

  7. Rodgers WB, Gerber EJ, Patterson J. Intraoperative and early postoperative complications in extreme lateral interbody fusion an analysis of 600 cases. Spine. 2011;36:26–32. https://doi.org/10.1097/BRS.0b013e3181e1040a.

    Article  PubMed  Google Scholar 

  8. He L, Kang Z, Tang WJ, Rong LM. A MRI study of lumbar plexus with respect to the lateral transpsoas approach to the lumbar spine. Eur Spine J. 2015;24:2538–45. https://doi.org/10.1007/s00586-015-3847-8.

    Article  PubMed  Google Scholar 

  9. O'Brien JR. Nerve injury in lateral lumbar interbody fusion. Spine. 2017;42:S24. https://doi.org/10.1097/BRS.0000000000002034.

    Article  PubMed  Google Scholar 

  10. Uribe JS, Isaacs RE, Youssef JA, Khajavi K, Balzer JR, Kanter AS, et al. Can triggered electromyography monitoring throughout retraction predict postoperative symptomatic neuropraxia after XLIF? Results from a prospective multicenter trial. Eur Spine J. 2015;24(Suppl 3):378–85. https://doi.org/10.1007/s00586-015-3871-8.

    Article  PubMed  Google Scholar 

  11. Hijji FY, Narain AS, Bohl DD, Ahn J, Long WW, DiBattista JV, et al. Lateral lumbar interbody fusion: a systematic review of complication rates. Spine Journal. 2017;17:1412–9. https://doi.org/10.1016/j.spinee.2017.04.022.

    Article  PubMed  Google Scholar 

  12. Abel NA, Januszewski J, Vivas AC, Uribe JS. Femoral nerve and lumbar plexus injury after minimally invasive lateral retroperitoneal transpsoas approach: electrodiagnostic prognostic indicators and a roadmap to recovery. Neurosurg Rev. 2018;41:457–64. https://doi.org/10.1007/s10143-017-0863-7.

    Article  PubMed  Google Scholar 

  13. Campbell PG, Nunley PD, Cavanaugh D, Kerr E, Utter PA, Frank K, et al. Short-term outcomes of lateral lumbar interbody fusion without decompression for the treatment of symptomatic degenerative spondylolisthesis at L4-5. Neurosurg Focus. 2018;44:E6. https://doi.org/10.3171/2017.10.FOCUS17566.

    Article  PubMed  Google Scholar 

  14. Xu DS, Bach K, Uribe JS. Minimally invasive anterior and lateral transpsoas approaches for closed reduction of grade II spondylolisthesis: initial clinical and radiographic experience. Neurosurg Focus. 2018;44:E4. https://doi.org/10.3171/2017.10.FOCUS17574.

    Article  PubMed  Google Scholar 

  15. Sedra F, Lee R, Dominguez I, Wilson L. Neurological complications using a novel retractor system for direct lateral minimally invasive lumbar interbody fusion. J Clin Neurosci. 2016;31:81–7. https://doi.org/10.1016/j.jocn.2016.02.031.

    Article  PubMed  Google Scholar 

  16. Nunley P, Sandhu F, Frank K, Stone M. Neurological complications after lateral Transpsoas approach to anterior interbody fusion with a novel flat-blade spine-fixed retractor. Biomed Res Int. 2016:8450712. https://doi.org/10.1155/2016/8450712.

  17. Lee C, Yoon K, Ha S. Which approach is advantageous to preventing development of adjacent segment disease? Comparative analysis of 3 different lumbar interbody fusion techniques (ALIF, LLIF, and PLIF) in L4-5 spondylolisthesis. World Neurosurg. 2017;105:612–22. https://doi.org/10.1016/j.wneu.2017.06.005.

    Article  PubMed  Google Scholar 

  18. Sellin JN, Brusko GD, Levi AD. Lateral lumbar interbody fusion revisited: complication avoidance and outcomes with the mini-open approach. World Neurosurg. 2019;121:E653–e653. https://doi.org/10.1016/j.wneu.2018.09.180.

    Article  Google Scholar 

  19. Riley MR, Doan AT, Vogel RW, Aguirre AO, Pieri KS, Scheid EH. Use of motor evoked potentials during lateral lumbar interbody fusion reduces postoperative deficits. Spine Journal. 2018;18:1763–78. https://doi.org/10.1016/j.spinee.2018.02.024.

    Article  PubMed  Google Scholar 

  20. Cheng I, Acosta F, Chang K, Pham M. Point-counterpoint: the use of neuromonitoring in lateral transpsoas surgery. Spine. 2016;41:S151. https://doi.org/10.1097/BRS.0000000000001461.

    Article  Google Scholar 

  21. Li JXJ, Phan K, Mobbs R. Oblique lumbar interbody fusion: technical aspects, operative outcomes, and complications. World Neurosurg. 2017;98:113–23. https://doi.org/10.1016/j.wneu.2016.10.074.

    Article  CAS  PubMed  Google Scholar 

  22. Abe K, Orita S, Mannoji C, Motegi H, Aramomi M, Ishikawa T, et al. Perioperative complications in 155 patients who underwent oblique lateral interbody fusion surgery perspectives and indications from a retrospective, multicenter survey. Spine. 2017;42:55–62. https://doi.org/10.1097/BRS.0000000000001650.

    Article  PubMed  Google Scholar 

  23. Jin J, Ryu K, Hur J, Seong J, Kim J, Cho H. Comparative study of the difference of perioperative complication and radiologic results MIS-DLIF (minimally nvasive direct lateral lumbar interbody fusion) versus MIS-OLIF (minimally invasive oblique lateral lumbar interbody fusion). Clin Spine Surg. 2018;31:31–6. https://doi.org/10.1097/BSD.0000000000000580.

    Article  PubMed  Google Scholar 

  24. Zeng Z, Xu Z, He D, Zhao X, Ma W, Ni W, et al. Complications and prevention strategies of oblique lateral interbody fusion technique. Orthop Surg. 2018;10:98–106. https://doi.org/10.1111/os.12380.

    Article  PubMed  Google Scholar 

  25. Woods KRM, Billys JB, Hynes RA. Technical description of oblique lateral interbody fusion at L1-L5 (OLIF25) and at L5-S1 (OLIF51) and evaluation of complication and fusion rates. Spine Journal. 2017;17:545–53. https://doi.org/10.1016/j.spinee.2016.10.026.

    Article  PubMed  Google Scholar 

  26. Miscusi M, Ramieri A, Forcato S, Giuffre M, Trungu S, Cimatti M, et al. Comparison of pure lateral and oblique lateral inter-body fusion for treatment of lumbar degenerative disk disease: a multicentric cohort study. Eur Spine J. 2018;27:222–8. https://doi.org/10.1007/s00586-018-5596-y.

    Article  PubMed  Google Scholar 

  27. Hayama S, Nakano A, Nakaya Y, Baba I, Fujiwara K, Fujishiro T, et al. The evaluation of indirect neural decompression after lateral lumbar interbody fusion using intraoperative computed tomography myelogram. World Neurosurg. 2018;120:E718–e718. https://doi.org/10.1016/j.wneu.2018.08.146.

    Article  Google Scholar 

  28. Isaacs RE, Sembrano JN, Tohmeh AG, Degenerative Study Grp SOLAS. Two-year comparative outcomes of MIS lateral and MIS transforaminal interbody fusion in the treatment of degenerative spondylolisthesis: part II: radiographic findings. Spine. 2016;41:S144. https://doi.org/10.1097/BRS.0000000000001472.

    Article  Google Scholar 

  29. Sembrano JN, Tohmeh A, Isaacs R, SOLAS Degenerative Study Group. Two-year comparative outcomes of MIS lateral and MIS transforaminal interbody fusion in the treatment of degenerative spondylolisthesis part I: clinical findings spine 2016; 41:S132. doi: https://doi.org/10.1097/BRS.0000000000001471.

  30. Wang TY, Nayar G, Brown CR, Pimenta L, Karikari IO, Isaacs RE. Bony lateral recess stenosis and other radiographic predictors of failed indirect decompression via extreme lateral interbody fusion: multi-institutional analysis of 101 consecutive spinal levels. World Neurosurg. 2017;106:819–26 doi: S1878-8750(17)31145-2 [pii].

    Article  PubMed  Google Scholar 

  31. Lang G, Perrech M, Navarro-Ramirez R, Hussain I, Pennicooke B, Maryam F, et al. Potential and limitations of neural decompression in extreme lateral interbody fusion-a systematic review. World Neurosurg. 2017;101:99–113 doi: S1878-8750(17)30103-1 [pii].

    Article  PubMed  Google Scholar 

  32. Navarro-Ramirez R, Lang G, Moriguchi Y, Elowitz E, Corredor JA, Avila MJ, et al. Are locked facets a contraindication for extreme lateral interbody fusion? World Neurosurg. 2017;100:607–18 doi: S1878-8750(16)31207-4 [pii].

    Article  PubMed  Google Scholar 

  33. Park S, Lee C, Chung S, Kang S, Park H, Kim S. The ideal cage position for achieving both indirect neural decompression and segmental angle restoration in lateral lumbar interbody fusion (LLIF). Clin Spine Surg. 2017;30:E790.

    Google Scholar 

  34. Sembrano JN, Horazdovsky RD, Sharma AK, Yson SC, Santos ERG, Polly DW, Jr. Do lordotic cages provide better segmental lordosis versus nonlordotic cages in lateral lumbar interbody fusion (LLIF)?. Clin Spine Surg. 2017; 30:E343.

  35. Lee TK, Yazdi JS, Floro KE, Arenos PT, Lee JR. Protection of the genitofemoral nerve using endoscopic assistance in minimally invasive lateral lumbar fusion. Interdiscip Neurosurg. 2017;8:4–7. https://doi.org/10.1016/j.inat.2016.12.006.

    Article  Google Scholar 

  36. Turner JD, Akbarnia BA, Eastlack RK, Bagheri R, Nguyen S, Pimenta L, et al. Radiographic outcomes of anterior column realignment for adult sagittal plane deformity: a multicenter analysis. Eur Spine J. 2015;24:427–32.

    Article  PubMed  Google Scholar 

  37. Chung N, Lee H, Jeon C. Accuracy of the lateral cage placement under intraoperative C-arm fluoroscopy in oblique lateral interbody fusion. J Orthop Sci. 2018;23:918–22. https://doi.org/10.1016/j.jos.2018.07.010.

    Article  PubMed  Google Scholar 

  38. Peck JH, Kavlock KD, Showalter BL, Ferrell BM, Peck DG, Dmitriev AE. Mechanical performance of lumbar intervertebral body fusion devices: an analysis of data submitted to the Food and Drug Administration. J Biomech. 2018;78:87–93. https://doi.org/10.1016/j.jbiomech.2018.07.022.

    Article  PubMed  Google Scholar 

  39. Liu X, Ma J, Park P, Huang X, Xie N, Ye X. Biomechanical comparison of multilevel lateral interbody fusion with and without supplementary instrumentation: a three-dimensional finite element study. BMC Musculoskelet Disord. 2017;18:63. https://doi.org/10.1186/s12891-017-1387-6.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tempel ZJ, McDowell MM, Panczykowski DM, Gandhoke GS, Hamilton DK, Okonkwo DO, et al. Graft subsidence as a predictor of revision surgery following stand-alone lateral lumbar interbody fusion. J Neurosurg -Spine. 2018;28:50–6. https://doi.org/10.3171/2017.5.SPINE16427.

    Article  PubMed  Google Scholar 

  41. Bocahut N, Audureau E, Poignard A, Delambre J, Queinnecc S, Lachaniette C-F, et al. Incidence and impact of implant subsidence after stand-alone lateral lumbar interbody fusion. Orthop Traumatol -Surg Res. 2018;104:405–10. https://doi.org/10.1016/j.otsr.2017.11.018.

    Article  CAS  PubMed  Google Scholar 

  42. Marchi L, Abdala N, Oliveira L, Amaral R, Coutinho E, Pimenta L. Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion. Clinical article J Neurosurg -Spine. 2013;19:110–8. https://doi.org/10.3171/2013.4.SPINE12319.

    Article  PubMed  Google Scholar 

  43. Teng I, Han J, Phan K, Mobbs R. A meta-analysis comparing ALIF, PLIF, TLIF and LLIF. J Clin Neurosci. 2017;44:11–7. https://doi.org/10.1016/j.jocn.2017.06.013.

    Article  Google Scholar 

  44. Malham GM, Parker RM, Blecher CM, Chow FY, Seex KA. Choice of approach does not affect clinical and radiologic outcomes: a comparative cohort of patients having anterior lumbar interbody fusion and patients having lateral lumbar interbody fusion at 24 months. Glob Spine J. 2016;6:472–81. https://doi.org/10.1055/s-0035-1569055.

    Article  Google Scholar 

  45. Reis MT, Reyes PM, Altun I, Newcomb AGUS, Singh V, Chang SW, et al. Biomechanical evaluation of lateral lumbar interbody fusion with secondary augmentation. J Neurosurg -Spine. 2016;25:720–6. https://doi.org/10.3171/2016.4.SPINE151386.

    Article  PubMed  Google Scholar 

  46. Fantini GA, Pawar AY. Access related complications during anterior exposure of the lumbar spine. World J Orthop. 2013;4:19–23. https://doi.org/10.5312/wjo.v4.i1.19.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Phan K, Maharaj M, Assem Y, Mobbs RJ. Review of early clinical results and complications associated with oblique lumbar interbody fusion (OLIF). J Clin Neurosci. 2016;31:23–9. https://doi.org/10.1016/j.jocn.2016.02.030.

    Article  PubMed  Google Scholar 

  48. Beckman JM, Vincent B, Park MS, Billys JB, Isaacs RE, Pimenta L, et al. Contralateral psoas hematoma after minimally invasive, lateral retroperitoneal transpsoas lumbar interbody fusion: a multicenter review of 3950 lumbar levels. J Neurosurg -Spine. 2017;26:50–4. https://doi.org/10.3171/2016.4.SPINE151040.

    Article  PubMed  Google Scholar 

  49. Mobbs RJ, Phan K, Daly D, Rao PJ, Lennox A. Approach-related complications of anterior lumbar interbody fusion: results of a combined spine and vascular surgical team. Global spine journal. 2016;29:147–54.

    Article  Google Scholar 

  50. Assina R, Majmundar NJ, Herschman Y, Heary RF. First report of major vascular injury due to lateral transpsoas approach leading to fatality: case report. J Neurosurg Spine. 2014;21:794–8.

    Article  PubMed  Google Scholar 

  51. Mai HT, Schneider AD, Alvarez AP, Hashmi SZ, Smith JT, Freshman RD, et al. Anatomic considerations in the lateral transpsoas interbody fusion: the impact of age, sex, BMI, and scoliosis. Clin Spine Surg. 2018. doi: 10.1097/BSD.0000000000000760 [doi].

  52. Chang J, Kim J, Jo H. Ventral dural injury after oblique lumbar interbody fusion. World Neurosurg. 2017; 98:UNSP 881.e1s doi: 10.1016/j.wneu.2016.11.028

  53. Gundanna M, Shah K. Delayed incisional hernia following minimally invasive trans-psoas lumbar spine surgery: report of a rare complication and management. Int J Spine Surg. 2018;12:126–30. https://doi.org/10.14444/5019.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Plata-Bello J, Roldan H, Brage L, Rahy A, Garcia-Marin V. Delayed abdominal pseudohernia in young patient after lateral lumbar interbody fusion procedure: case report. World Neurosurg. 2016; 91:UNSP 671.e13. doi: https://doi.org/10.1016/j.wneu.2016.04.010.

  55. Chin KR, Pencle FJR, Coombs AV, Brown MD, Conklin KJ, O'Neill AM, et al. Lateral lumbar interbody fusion in ambulatory surgery centers: patient selection and outcome measures compared with an Inhospital cohort. Spine. 2016;41:686–92. https://doi.org/10.1097/BRS.0000000000001285.

    Article  PubMed  Google Scholar 

Download references

Funding

Dr. Hah has not received funding for this work. Dr. Kang has received research support from The Eli and Edythe Broad Foundation during the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Hah.

Ethics declarations

Conflict of Interest

Dr. Hah has received personal fees as a consultant for NuVasive. Dr. Kang declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Minimally Invasive Spine Surgery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hah, R., Kang, H.P. Lateral and Oblique Lumbar Interbody Fusion—Current Concepts and a Review of Recent Literature. Curr Rev Musculoskelet Med 12, 305–310 (2019). https://doi.org/10.1007/s12178-019-09562-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-019-09562-6

Keywords

Navigation