Skip to main content

Advertisement

Log in

Complications following spine fusion for adolescent idiopathic scoliosis

  • Pediatric Orthopedics (B Heyworth, Section Editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Complications following spine fusion for adolescent idiopathic scoliosis can be characterized as either intra-operative or post-operative. The most serious and feared complication is neurologic injury, both in the intra- and post-operative period. Other intra-operative complications include dural tears and ophthalmologic or peripheral nerve deficits, which may be related to positioning. Among the most common post-operative complications are surgical site infection, venous thromboembolism, gastrointestinal complications, and implant-related complications. Significant blood loss requiring transfusion, traditionally considered a known sequelae of spine fusion, is now being recognized as a “complication” in large national databases. Pediatric spine surgeons who care for patients with AIS must be thoroughly familiar with all potential complications and their management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Rogala EJ, Drummond DS, Scoliosis GJ. incidence and natural history. A prospective epidemiological study. J Bone Joint Surg Am. 1978;60:173–6.

    Article  CAS  PubMed  Google Scholar 

  2. Soucacos PN, Soucacos PK, Zacharis KC, Beris AE, Xenakis TA. School-screening for scoliosis. A prospective epidemiological study in northwestern and central Greece. J Bone Joint Surg Am. 1997;79:1498–503.

    Article  CAS  PubMed  Google Scholar 

  3. Montgomery F, Willner S. The natural history of idiopathic scoliosis. Incidence of treatment in 15 cohorts of children born between 1963 and 1977. Spine. 1997;22:772–4.

    Article  CAS  PubMed  Google Scholar 

  4. Weinstein SL, Zavala DC, Ponseti IV. Idiopathic scoliosis: long-term follow-up and prognosis in untreated patients. J Bone Joint Surg Am. 1981;63:702–12.

    Article  CAS  PubMed  Google Scholar 

  5. Weinstein SL, Dolan LA, Spratt KF, Peterson KK, Spoonamore MJ, Ponseti IV. Health and function of patients with untreated idiopathic scoliosis: a 50-year natural history study. Jama. 2003;289:559–67.

    Article  PubMed  Google Scholar 

  6. Weinstein SL, Ponseti IV. Curve progression in idiopathic scoliosis. J Bone Joint Surg Am. 1983;65:447–55.

    Article  CAS  PubMed  Google Scholar 

  7. Coe JD, Arlet V, Donaldson W, et al. Complications in spinal fusion for adolescent idiopathic scoliosis in the new millennium. A report of the Scoliosis Research Society Morbidity and Mortality Committee. Spine. 2006;31:345–9.

    Article  PubMed  Google Scholar 

  8. Vigneswaran HT, Grabel ZJ, Eberson CP, Palumbo MA, Daniels AH. Surgical treatment of adolescent idiopathic scoliosis in the United States from 1997 to 2012: an analysis of 20,346 patients. J Neurosurg Pediatr. 2015;16:322–8. Recent paper detailing increasing rates of fusion for AIS, as well as increasing rates of complications. Increasing complication rate likely due to reporting of blood transfusion as a complication.

    Article  PubMed  Google Scholar 

  9. Reames DL, Smith JS, Fu KM, et al. Complications in the surgical treatment of 19,360 cases of pediatric scoliosis: a review of the Scoliosis Research Society Morbidity and Mortality database. Spine. 2011;36:1484–91. Most recent SRS M&M data on complications in pediatric idiopathic scoliosis. Does not delinate between infantile, juvenile, or adolescent cases.

    Article  PubMed  Google Scholar 

  10. Carreon LY, Puno RM, Lenke LG, et al. Non-neurologic complications following surgery for adolescent idiopathic scoliosis. J Bone Joint Surg Am. 2007;89:2427–32.

    PubMed  Google Scholar 

  11. Lykissas MG, Jain VV, Nathan ST, et al. Mid- to long-term outcomes in adolescent idiopathic scoliosis after instrumented posterior spinal fusion: a meta-analysis. Spine. 2013;38:E113–9.

    Article  PubMed  Google Scholar 

  12. Martin CT, Pugely AJ, Gao Y, Weinstein SL. Causes and risk factors for 30-day unplanned readmissions after pediatric spinal deformity surgery. Spine. 2015;40:238–46.

    Article  PubMed  Google Scholar 

  13. Jain A, Puvanesarajah V, Menga EN, Sponseller PD. Unplanned Hospital Readmissions and Reoperations After Pediatric Spinal Fusion Surgery. Spine. 2015;40:856–62.

    Article  PubMed  Google Scholar 

  14. MacEwen GD, Bunnell WP, Sriram K. Acute neurological complications in the treatment of scoliosis. A report of the Scoliosis Research Society. J Bone Joint Surg Am. 1975;57:404–8.

    Article  CAS  PubMed  Google Scholar 

  15. Smith JT, Johnston C, Skaggs D, Flynn J, Vitale M. A New Classification System to Report Complications in Growing Spine Surgery: A Multicenter Consensus Study. J Pediatr Orthop. 2015;35:798–803.

    Article  PubMed  Google Scholar 

  16. Wilber RG, Thompson GH, Shaffer JW, Brown RH, Nash Jr CL. Postoperative neurological deficits in segmental spinal instrumentation. A study using spinal cord monitoring. J Bone Joint Surg Am. 1984;66:1178–87.

    Article  CAS  PubMed  Google Scholar 

  17. Winter RB. Neurologic safety in spinal deformity surgery. Spine. 1997;22:1527–33.

    Article  CAS  PubMed  Google Scholar 

  18. Hamilton DK, Smith JS, Sansur CA, et al. Rates of new neurological deficit associated with spine surgery based on 108,419 procedures: a report of the scoliosis research society morbidity and mortality committee. Spine. 2011;36:1218–28.

    Article  PubMed  Google Scholar 

  19. Diab M, Smith AR, Kuklo TR. Spinal Deformity Study G. Neural complications in the surgical treatment of adolescent idiopathic scoliosis. Spine. 2007;32:2759–63.

    Article  PubMed  Google Scholar 

  20. Qiu Y, Wang S, Wang B, Yu Y, Zhu F, Zhu Z. Incidence and risk factors of neurological deficits of surgical correction for scoliosis: analysis of 1373 cases at one Chinese institution. Spine. 2008;33:519–26.

    Article  PubMed  Google Scholar 

  21. Schwartz DM, Drummond DS, Hahn M, Ecker ML, Dormans JP. Prevention of positional brachial plexopathy during surgical correction of scoliosis. J Spinal Disord. 2000;13:178–82.

    Article  CAS  PubMed  Google Scholar 

  22. Kamel I, Barnette R. Positioning patients for spine surgery: Avoiding uncommon position-related complications. World journal of orthopedics. 2014;5:425–43.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schwartz DM, Auerbach JD, Dormans JP, et al. Neurophysiological detection of impending spinal cord injury during scoliosis surgery. J Bone Joint Surg Am. 2007;89:2440–9.

    PubMed  Google Scholar 

  24. Vitale MG, Moore DW, Matsumoto H, et al. Risk factors for spinal cord injury during surgery for spinal deformity. J Bone Joint Surg Am. 2010;92:64–71.

    Article  PubMed  Google Scholar 

  25. Michael G. Vitale M, MPH, David L. Skaggs, MD, Gregory I. Pace, BA, Margaret L. Wright, BS, Hiroko Matsumoto, MAcorrespondenceemail, Richard C.E. Anderson, MD, Douglas L. Brockmeyer, MD, John P. Dormans, MD, John B. Emans, MD, Mark A. Erickson, MD, John M. Flynn, MD, Michael P. Glotzbecker, MD, Kamal N. Ibrahim, MD, Stephen J. Lewis, MD, Scott J. Luhmann, MD, Anil Mendiratta, MD, B. Stephens Richards III, MD, James O. Sanders, MD, Suken A. Shah, MD, John T. Smith, MD, Kit M. Song, MD, Paul D. Sponseller, MD, Daniel J. Sucato, MD, MS, David P. Roye, MD, Lawrence G. Lenke, MD. Best practices in intraoperative neuromonitoring in spine deformity surgery: development of an intraoperative checklist to optimize response. Spine Deformity. 2014;2:333–9. Provides an intra-operative checklist for situations involving neuromonitoring changes.

  26. Mooney 3rd JF, Bernstein R, Hennrikus Jr WL, MacEwen GD. Neurologic risk management in scoliosis surgery. J Pediatr Orthop. 2002;22:683–9. Expert opinion regarding management of all aspects of neurologic risk in scoliosis surgery, including preoperative evaluation, intraoperative management, and postoperative counseling.

  27. Hicks JM, Singla A, Shen FH, Arlet V. Complications of pedicle screw fixation in scoliosis surgery: a systematic review. Spine. 2010;35:E465–70.

    Article  PubMed  Google Scholar 

  28. Suk SI, Kim WJ, Lee SM, Kim JH, Chung ER. Thoracic pedicle screw fixation in spinal deformities: are they really safe? Spine. 2001;26:2049–57.

    Article  CAS  PubMed  Google Scholar 

  29. Di Silvestre M, Parisini P, Lolli F, Bakaloudis G. Complications of thoracic pedicle screws in scoliosis treatment. Spine. 2007;32:1655–61.

    Article  PubMed  Google Scholar 

  30. Myers MA, Hamilton SR, Bogosian AJ, Smith CH, Wagner TA. Visual loss as a complication of spine surgery. A review of 37 cases. Spine. 1997;22:1325–9.

    Article  CAS  PubMed  Google Scholar 

  31. Patil CG, Lad EM, Lad SP, Ho C, Boakye M. Visual loss after spine surgery: a population-based study. Spine. 2008;33:1491–6.

    Article  PubMed  Google Scholar 

  32. Mirovsky Y, Neuwirth M. Injuries to the lateral femoral cutaneous nerve during spine surgery. Spine. 2000;25:1266–9.

    Article  CAS  PubMed  Google Scholar 

  33. Auerbach JD, Kean K, Milby AH, et al. Delayed postoperative neurologic deficits in spinal deformity surgery. Spine. 2015

  34. Chang JH, Hoernschemeyer DG, Sponseller PD. Delayed postoperative paralysis in adolescent idiopathic scoliosis: management with partial removal of hardware and staged correction. J Spinal Disord Tech. 2006;19:222–5.

    Article  PubMed  Google Scholar 

  35. Dapunt UA, Mok JM, Sharkey MS, Davis AA, Foster-Barber A, Diab M. Delayed presentation of tetraparesis following posterior thoracolumbar spinal fusion and instrumentation for adolescent idiopathic scoliosis. Spine. 2009;34:E936–41.

    Article  PubMed  Google Scholar 

  36. Croft LD, Pottinger JM, Chiang HY, Ziebold CS, Weinstein SL, Herwaldt LA. Risk factors for surgical site infections after pediatric spine operations. Spine. 2015;40:E112–9.

    Article  PubMed  Google Scholar 

  37. Mackenzie WG, Matsumoto H, Williams BA, et al. Surgical site infection following spinal instrumentation for scoliosis: a multicenter analysis of rates, risk factors, and pathogens. J Bone Joint Surg Am. 2013;95:800–6. S1-2.

    Article  PubMed  Google Scholar 

  38. Glotzbecker MP, Riedel MD, Vitale MG, et al. What’s the evidence? Systematic literature review of risk factors and preventive strategies for surgical site infection following pediatric spine surgery. J Pediatr Orthop. 2013;33:479–87. Excellent systematic review of risk factors for infection following pediatric spine surgery.

    Article  PubMed  Google Scholar 

  39. Subramanyam R, Schaffzin J, Cudilo EM, Rao MB, Varughese AM. Systematic review of risk factors for surgical site infection in pediatric scoliosis surgery. The spine journal : official journal of the North American Spine Society. 2015;15:1422–31. Excellent systematic review of risk factors for infection following pediatric spine surgery.

    Article  Google Scholar 

  40. Aleissa S, Parsons D, Grant J, Harder J, Howard J. Deep wound infection following pediatric scoliosis surgery: incidence and analysis of risk factors. Canadian journal of surgery Journal canadien de chirurgie. 2011;54:263–9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Labbe AC, Demers AM, Rodrigues R, Arlet V, Tanguay K, Moore DL. Surgical-site infection following spinal fusion: a case–control study in a children’s hospital. Infect Control Hosp Epidemiol. 2003;24:591–5.

    Article  PubMed  Google Scholar 

  42. Ho C, Skaggs DL, Weiss JM, Tolo VT. Management of infection after instrumented posterior spine fusion in pediatric scoliosis. Spine. 2007;32:2739–44. Large series of patients with postoperative infections detailing a nearly a 50 % chance that infection cannot be eradicated without the removal of implants.

  43. Rihn JA, Lee JY, Ward WT. Infection after the surgical treatment of adolescent idiopathic scoliosis: evaluation of the diagnosis, treatment, and impact on clinical outcomes. Spine. 2008;33:289–94.

    Article  PubMed  Google Scholar 

  44. Richards BR, Emara KM. Delayed infections after posterior TSRH spinal instrumentation for idiopathic scoliosis: revisited. Spine. 2001;26:1990–6.

    Article  CAS  PubMed  Google Scholar 

  45. Richards BS. Delayed infections following posterior spinal instrumentation for the treatment of idiopathic scoliosis. J Bone Joint Surg Am. 1995;77:524–9.

    Article  CAS  PubMed  Google Scholar 

  46. Ho C, Sucato DJ, Richards BS. Risk factors for the development of delayed infections following posterior spinal fusion and instrumentation in adolescent idiopathic scoliosis patients. Spine. 2007;32:2272–7.

    Article  PubMed  Google Scholar 

  47. Hedequist D, Haugen A, Hresko T, Emans J. Failure of attempted implant retention in spinal deformity delayed surgical site infections. Spine. 2009;34:60–4.

    Article  PubMed  Google Scholar 

  48. Di Silvestre M, Bakaloudis G, Lolli F, Giacomini S. Late-developing infection following posterior fusion for adolescent idiopathic scoliosis. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2011;20 Suppl 1:S121–7.

    Article  Google Scholar 

  49. Canavese F, Gupta S, Krajbich JI, Emara KM. Vacuum-assisted closure for deep infection after spinal instrumentation for scoliosis. J Bone Joint Surg. 2008;90:377–81.

    Article  CAS  Google Scholar 

  50. Vitale MG, Riedel MD, Glotzbecker MP, et al. Building consensus: development of a Best Practice Guideline (BPG) for surgical site infection (SSI) prevention in high-risk pediatric spine surgery. J Pediatr Orthop. 2013;33:471–8. Consensus statement from group of experience pediatric spine surgeons detailing best practices for minimizing risk of surgical site infection in high risk pediatric spine surgery.

  51. Yoshioka K, Murakami H, Demura S, Kato S, Tsuchiya H. Prevalence and risk factors for development of venous thromboembolism after degenerative spinal surgery. Spine. 2015;40:E301–6.

    Article  PubMed  Google Scholar 

  52. Tominaga H, Setoguchi T, Tanabe F, et al. Risk factors for venous thromboembolism after spine surgery. Medicine. 2015;94, e466.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jain A, Karas DJ, Skolasky RL, Sponseller PD. Thromboembolic complications in children after spinal fusion surgery. Spine. 2014;39:1325–9.

    Article  PubMed  Google Scholar 

  54. Froese AB. Preoperative evaluation of pulmonary function. Pediatr Clin North Am. 1979;26:645–59.

    Article  CAS  PubMed  Google Scholar 

  55. Stein M. Pulmonary evaluation and therapy prior to surgery. Int Anesthesiol Clin. 1971;9:3–19.

    Article  CAS  PubMed  Google Scholar 

  56. Yuan N, Fraire JA, Margetis MM, Skaggs DL, Tolo VT, Keens TG. The effect of scoliosis surgery on lung function in the immediate postoperative period. Spine. 2005;30:2182–5.

    Article  PubMed  Google Scholar 

  57. Lam SK, Pan IW, Harris DA, Sayama CM, Luerssen TG, Jea A. Patient-, procedure-, and hospital-related risk factors of allogeneic and autologous blood transfusion in pediatric spinal fusion surgery in the United States. Spine. 2015;40:560–9.

    Article  PubMed  Google Scholar 

  58. Linam WM, Margolis PA, Staat MA, et al. Risk factors associated with surgical site infection after pediatric posterior spinal fusion procedure. Infect Control Hosp Epidemiol. 2009;30:109–16.

    PubMed  Google Scholar 

  59. Ledonio CG, Polly Jr DW, Vitale MG, Wang Q, Richards BS. Pediatric pedicle screws: comparative effectiveness and safety: a systematic literature review from the Scoliosis Research Society and the Pediatric Orthopaedic Society of North America task force. J Bone Joint Surg Am. 2011;93:1227–34.

    Article  PubMed  Google Scholar 

  60. Botolin S, Merritt C, Erickson M. Aseptic loosening of pedicle screw as a result of metal wear debris in a pediatric patient. Spine. 2013;38:E38–42.

    Article  PubMed  Google Scholar 

  61. Soultanis K, Pyrovolou N, Karamitros A, Konstantinou V, Liveris J, Soucacos PN. Instrumentation loosening and material of implants as predisposal factors for late postoperative infections in operated idiopathic scoliosis. Stud Health Technol Inform. 2006;123:559–64.

    CAS  PubMed  Google Scholar 

  62. Soultanis KC, Pyrovolou N, Zahos KA, et al. Late postoperative infection following spinal instrumentation: stainless steel versus titanium implants. J Surg Orthop Adv. 2008;17:193–9.

    PubMed  Google Scholar 

  63. Sheehan E, McKenna J, Mulhall KJ, Marks P, McCormack D. Adhesion of Staphylococcus to orthopaedic metals, an in vivo study. J Orthop Res. 2004;22:39–43.

    Article  CAS  PubMed  Google Scholar 

  64. Crawford HA, Pillai SB, Nair AK, Upadhyay V. Gastrointestinal morbidity following spinal surgery in children. Orthopaedic Proceedings. 2005;87:B:403.

    Google Scholar 

  65. Smith JT, Smith MS. Does a preoperative bowel preparation reduce bowel morbidity and length of stay after scoliosis surgery? A randomized prospective study. J Pediatr Orthop. 2013;33:e69–71.

    Article  PubMed  Google Scholar 

  66. Hooten KG, Oliveria SF, Larson SD, Pincus DW. Ogilvie’s syndrome after pediatric spinal deformity surgery: successful treatment with neostigmine. J Neurosurg Pediatr. 2014;14:255–8.

    Article  PubMed  Google Scholar 

  67. Smith BG, Hakim-Zargar M, Thomson JD. Low body mass index: a risk factor for superior mesenteric artery syndrome in adolescents undergoing spinal fusion for scoliosis. J Spinal Disord Tech. 2009;22:144–8.

    Article  PubMed  Google Scholar 

  68. Lam DJ, Lee JZ, Chua JH, Lee YT, Lim KB. Superior mesenteric artery syndrome following surgery for adolescent idiopathic scoliosis: a case series, review of the literature, and an algorithm for management. J Pediatr Orthop B. 2014;23:312–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. Murphy.

Ethics declarations

Conflict of interest

Robert F. Murphy and James F. Mooney III declare that they have no conflicts of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pediatric Orthopedics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy, R.F., Mooney, J.F. Complications following spine fusion for adolescent idiopathic scoliosis. Curr Rev Musculoskelet Med 9, 462–469 (2016). https://doi.org/10.1007/s12178-016-9372-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-016-9372-5

Keywords

Navigation