Skip to main content

Advertisement

Log in

Mitochondria impairment correlates with increased sensitivity of aging RPE cells to oxidative stress

  • Published:
Journal of Ocular Biology, Diseases, and Informatics

Abstract

Impairment of mitochondria function and cellular antioxidant systems are linked to aging and neurodegenerative diseases. In the eye, the retinal pigment epithelium (RPE) is exposed to a highly oxidative environment that contributes to age-related visual dysfunction. Here, we examined changes in mitochondrial function in human RPE cells and sensitivity to oxidative stress with increased chronological age. Primary RPE cells from young (9–20)-, mid-age (48–60)-, and >60 (62–76)-year-old donors were grown to confluency and examined by electron microscopy and flow cytometry using several mitochondrial functional assessment tools. Susceptibility of RPE cells to H2O2 toxicity was determined by lactate dehydrogenase and cytochrome c release, as well as propidium iodide staining. Reactive oxygen species, cytoplasmic Ca2+ [Ca2+]c, and mitochondrial Ca2+ [Ca2+]m levels were measured using 2′,7′-dichlorodihydrofluorescein diacetate, fluo-3/AM, and Rhod-2/AM, respectively, adenosine triphosphate (ATP) levels were measured by a luciferin/luciferase-based assay and mitochondrial membrane potential (ΔΨm) estimated using 5,5′,6,6′-tetrachloro 1,1′3,3′-tetraethylbenzimid azolocarbocyanine iodide. Expression of mitochondrial and antioxidant genes was determined by real-time polymerase chain reaction. RPE cells show greater sensitivity to oxidative stress, reduction in expression of mitochondrial heat shock protein 70, uncoupling protein 2, and superoxide dismutase 3, and greater expression of superoxide dismutase 2 levels with increased chronological age. Changes in mitochondrial number, size, shape, matrix density, cristae architecture, and membrane integrity were more prominent in samples obtained from >60 years old compared to mid-age and younger donors. These mitochondria abnormalities correlated with lower ATP levels, reduced ΔΨm, decreased [Ca2+]c, and increased sequestration of [Ca2+]m in cells with advanced aging. Our study provides evidence for mitochondrial decay, bioenergetic deficiency, weakened antioxidant defenses, and increased sensitivity of RPE cells to oxidative stress with advanced aging. Our findings suggest that with increased severity of mitochondrial decay and oxidative stress, RPE function may be altered in some individuals in a way that makes the retina more susceptible to age-related injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AMD:

Age-related macular degeneration

RPE:

Retinal pigment epithelium

H2-DCF-DA:

2′,7′-Dichlorodihydrofluorescin diacetate

JC-1:

5,5′,6,6′-Tetrachloro 1,1′3,3′-tetraethylbenzimid azolocarbocyanine iodide

MPTP:

Mitochondrial permeability transition pore

ROS:

Reactive oxygen species

ΔΨm:

Mitochondrial membrane potential

ATP:

Adenosine Triphosphate

[Ca2+]c :

Cytoplasmic calcium

[Ca2+]m :

Mitochondrial calcium

mtHSP70:

Mitochondrial heat shock protein 70

SOD:

Superoxide dismutase

UCP2:

Uncoupling protein 2

References

  1. Beckman KB, Ames BN. Mitochondrial aging: open questions. Ann N Y Acad Sci. 1998;854:118–27.

    Article  PubMed  CAS  Google Scholar 

  2. Sohal RS, Mockett RJ, Orr WC. Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Radic Biol Med. 2002;33:575–86.

    Article  PubMed  CAS  Google Scholar 

  3. Pamplona R, Barja G, Portero-Otín M. Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span: a homeoviscous-longevity adaptation? Ann N Y Acad Sci. 2002;959:475–90.

    Article  PubMed  CAS  Google Scholar 

  4. Viña J, Sastre J, Pallardó FV, Gambini J, Borrás C. Role of mitochondrial oxidative stress to explain the different longevity between genders: protective effect of estrogens. Free Radic Res. 2006;40:1359–65.

    Article  PubMed  Google Scholar 

  5. Duchen MR. Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signaling and cell death. J Physiol. 1999;16:1–17.

    Article  Google Scholar 

  6. Lane N. Mitochondrial disease: powerhouse of disease. Nature. 2006;440:600–2.

    Article  PubMed  CAS  Google Scholar 

  7. Mancuso C, Scapagini G, Currò D, Giuffrida Stella AM, De Marco C, et al. Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci. 2007;12:1107–23.

    Article  PubMed  CAS  Google Scholar 

  8. Jezek P, Hlavatá L. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol. 2005;37:2478–503.

    Article  PubMed  CAS  Google Scholar 

  9. Czarna M, Jarmuszkiewicz W. Role of mitochondria in reactive oxygen species generation and removal; relevance to signaling and programmed cell death. Postepy Biochem. 2006;52:145–56.

    PubMed  CAS  Google Scholar 

  10. Inoue M, Sato EF, Nishikawa M, Park AM, Kira Y, et al. Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem. 2003;10:2495–505.

    Article  PubMed  CAS  Google Scholar 

  11. Passos JF, Saretzki G, von Zglinicki T. DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucleic Acids Res. 2007;35:7505–13.

    Article  PubMed  CAS  Google Scholar 

  12. Chen JH, Hales CN, Ozanne SE. DNA damage, cellular senescence and organismal ageing: causal or correlative? Nucleic Acids Res. 2007;35:7417–28.

    Article  PubMed  CAS  Google Scholar 

  13. Stuart JA, Brown MF. Mitochondrial DNA maintenance and bioenergetics. Biochim Biophys Acta. 2006;1757:79–89.

    Article  PubMed  CAS  Google Scholar 

  14. Koopman WJ, Verkaart S, Visch HJ, van Emst-de VS, Nijtmans LG, et al. Human NADH:ubiquinone oxidoreductase deficiency: radical changes in mitochondrial morphology? Am J Physiol Cell Physiol. 2007;293:C22–9.

    Article  PubMed  CAS  Google Scholar 

  15. Chen X, Stern D, Yan SD. Mitochondrial dysfunction and Alzheimer's disease. Curr Alzheimer Res. 2006;3:515–20.

    Article  PubMed  CAS  Google Scholar 

  16. Hauptmann S, Scherping I, Dröse S, Brandt U, Schulz KL, et al. Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging. 2008;30:1574–86.

    Article  PubMed  Google Scholar 

  17. Kwong JQ, Henning MS, Starkov AA, Manfredi G. The mitochondrial respiratory chain is a modulator of apoptosis. J Cell Biol. 2007;179:1163–77.

    Article  PubMed  CAS  Google Scholar 

  18. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–95.

    Article  PubMed  CAS  Google Scholar 

  19. Takuma K, Yao J, Huang J, Xu H, Chen X, et al. ABAD enhances Abeta-induced cell stress via mitochondrial dysfunction. FASEB J. 2005;19:597–8.

    PubMed  CAS  Google Scholar 

  20. Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. Biochim Biophys Acta. 1998;1366:211–23.

    Article  PubMed  CAS  Google Scholar 

  21. Krieger C, Duchen MR. Mitochondria, Ca2+ and neurodegenerative disease. Eur J Pharm. 2002;447:177–88.

    Article  CAS  Google Scholar 

  22. Eckert A, Hauptmann S, Scherping I, Rhein V, Müller-Spahn F, et al. Soluble beta-amyloid leads to mitochondrial defects in amyloid precursor protein and tau transgenic mice. Neurodegener Dis. 2008;5:157–9.

    Article  PubMed  CAS  Google Scholar 

  23. Song DD, Shults CW, Sisk A, Rockenstein E, Masliah E. Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP. Exp Neurol. 2004;186:158–72.

    Article  PubMed  CAS  Google Scholar 

  24. Schapira AH. Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Parkinsonism Relat Disord. 1999;5:139–43.

    Article  PubMed  CAS  Google Scholar 

  25. Valente EM, Abou-Sleiman PM, Caputo V. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science. 2004;304:1158–60.

    Article  PubMed  CAS  Google Scholar 

  26. Wenzel P, Schuhmacher S, Kienhöfer J. Manganese superoxide dismutase and aldehyde dehydrogenase deficiency increase mitochondrial oxidative stress and aggravate age-dependent vascular dysfunction. Cardiovasc Res. 2008;80:280–9.

    Article  PubMed  CAS  Google Scholar 

  27. Hayakawa N, Yokoyama H, Kato H, Araki T. Age-related alterations of oxidative stress markers in campal CA1 sector. Exp Mol Pathol. 2008;85:135–40.

    Article  PubMed  CAS  Google Scholar 

  28. Sasaki T, Unno K, Tahara S, Shimada A, Chiba Y, et al. Age-related increase of superoxide generation in the brains of mammals and birds. Aging Cell. 2008;7:459–69.

    Article  PubMed  CAS  Google Scholar 

  29. Kimura K, Tanaka N, Nakamura N, Takano S, Ohkuma S. Knockdown of mitochondrial heat shock protein 70 promotes progeria-like phenotypes in Caenorhabditis elegans. J Biol Chem. 2007;282:5910–8.

    Article  PubMed  CAS  Google Scholar 

  30. Kirkwood TB. Understanding the odd science of aging. Cell. 2005;120:437–47.

    Article  PubMed  CAS  Google Scholar 

  31. D’Cruz PM, Yasumura D, Weir J, Matthes MT, Abderrahim H, et al. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet. 2000;9:645–51.

    Article  PubMed  Google Scholar 

  32. Gal A, Li Y, Thompson DA, Weir J, Orth U, et al. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet. 2000;26:270–1.

    Article  PubMed  CAS  Google Scholar 

  33. Dorey CK, Wu G, Ebenstein D, Garsd A, Weiter JJ. Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci. 1989;30:1691–9.

    PubMed  CAS  Google Scholar 

  34. Green WR, Enger C. Age-related macular degeneration histopathologic studies. The 1992 Lorenz E. Zimmerman lecture. Ophthalmology. 1993;100:1519–35.

    PubMed  CAS  Google Scholar 

  35. Beatty S, Koh H, Phil M, Henson D, Boulton M. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol. 2000;45:115–34.

    Article  PubMed  CAS  Google Scholar 

  36. Dunaief JL, Dentchev T, Ying GS, Milam AH. The role of apoptosis in age-related macular degeneration. Arch Ophthalmol. 2002;120:1435–42.

    PubMed  Google Scholar 

  37. Winkler BS, Boulton ME, Gottsch JD, Sternberg P. Oxidative damage and age-related macular degeneration. Mol Vis. 1999;5:32.

    PubMed  CAS  Google Scholar 

  38. Green WR, McDonnell PJ, Yeo JH. Pathologic features of senile macular degeneration. Ophthalmology. 1985;92:615–27.

    PubMed  CAS  Google Scholar 

  39. Young RW. Pathophysiology of age-related macular degeneration. Surv Ophthalmol. 1987;31:291–306.

    Article  PubMed  CAS  Google Scholar 

  40. Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, et al. An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age related macular degeneration. Prog Retin Eye Res. 2001;20:705–32.

    Article  PubMed  CAS  Google Scholar 

  41. Penfold PL, Madigan MC, Gillies MC, Provis JM. Immunological and aetiological aspects of macular degeneration. Prog Retin Eye Res. 2001;20:385–414.

    Article  PubMed  CAS  Google Scholar 

  42. Feher J, Kovacs I, Artico M, Cavallotti C, Papale A, et al. Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol Aging. 2006;27:983–93.

    Article  PubMed  CAS  Google Scholar 

  43. Weiter JJ. Phototoxic changes in the retina. In: Miller D, editor. Clinical light damage to the eye. New York: Springer; 1987. p. 79–125.

    Chapter  Google Scholar 

  44. Zareba M, Raciti MW, Henry MM, Sarna T, Burke JM. Oxidative stress in ARPE-19 cultures: do melanosomes confer cytoprotection? Free Radic Biol Med. 2006;40:87–100.

    Article  PubMed  CAS  Google Scholar 

  45. Nordgaard CL, Karunadharma PP, Feng X, Olsen TW, Ferrington DA. Mitochondrial proteomics of the retinal pigment epithelium at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci. 2008;49:2848–55.

    Article  PubMed  Google Scholar 

  46. Jin M, Yaung J, Kannan R, He S, Ryan SJ, et al. Hepatocyte growth factor protects RPE cells from apoptosis induced by glutathione depletion. Invest Ophthalmol Vis Sci. 2005;46:4311–9.

    Article  PubMed  Google Scholar 

  47. Liang FQ, Godley BF. Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res. 2003;76:397–403.

    Article  PubMed  CAS  Google Scholar 

  48. Jin GF, Hurst JS, Godley BF. Rod outer segments mediate mitochondrial DNA damage and apoptosis in human retinal pigment epithelium. Curr Eye Res. 2001;23:11–9.

    Article  PubMed  CAS  Google Scholar 

  49. Wang AL, Lukas TJ, Yuan M, Neufeld AH. Increased mitochondrial DNA damage and down-regulation of DNA repair enzymes in aged rodent retinal pigment epithelium and choroid. Mol Vis. 2008;14:644–51.

    PubMed  Google Scholar 

  50. Suter M, Remé C, Grimm C, Wenzel A, Jäättela M, et al. Age-related macular degeneration. The lipofusion component N-retinyl-N-retinylidene ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment epithelial cells. J Biol Chem. 2000;275:39625–30.

    Article  PubMed  CAS  Google Scholar 

  51. McKay BS, Burke JM. Separation of phenotypically distinct subpopulations of cultured human retinal pigment epithelial cells. Exp Cell Res. 1994;213:85–92.

    Article  PubMed  CAS  Google Scholar 

  52. Campos CB, Paim BA, Cosso RG, Castilho RF, Rottenberg H, et al. Method for monitoring of mitochondrial cytochrome c release during cell death: immunodetection of cytochrome c by flow cytometry after selective permeabilization of the plasma membrane. Cytometry A. 2006;69:515–23.

    PubMed  Google Scholar 

  53. Ma X, Tian X, Huang X, Yan F, Qiao D. Resveratrol-induced mitochondrial dysfunction and apoptosis are associated with Ca2+ and mCICR-mediated MPT activation in HepG2 cells. Mol Cell Biochem. 2007;302:99–109.

    Article  PubMed  CAS  Google Scholar 

  54. Degli Esposti M. Measuring mitochondrial reactive oxygen species. Methods. 2002;26:335–40.

    Article  PubMed  CAS  Google Scholar 

  55. Amer J, Goldfarb A, Fibach E. Flow cytometric measurement of reactive oxygen species production by normal and thalassaemic red blood cells. Eur J Haematol. 2003;70:84–90.

    Article  PubMed  CAS  Google Scholar 

  56. He Y, Tombran-Tink J, Ge J, Yue HZ, Duan S, et al. Mitochondrial complex I defect induces ROS release and degeneration in trabecular meshwork cells of POAG patients: protection by antioxidants. Invest Ophthalmol Vis Sci. 2008;49:1447–58.

    Article  PubMed  Google Scholar 

  57. He Y, Ge J, Tombran-Tink J. Mitochondrial defects and dysfunction in calcium regulation in glaucomatous trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2008;49:4912–22.

    Article  PubMed  Google Scholar 

  58. Deng X, Yin F, Lu X, Cai B, Yin W. The apoptotic effect of brucine from the seed of Strychnos nux-vomica on human hepatoma cells is mediated via Bcl-2 and Ca2+ involved mitochondrial pathway. Toxicol Sci. 2006;91:59–69.

    Article  PubMed  CAS  Google Scholar 

  59. Mironov SL, Ivannikov MV, Johansson M. [Ca2+]i signaling between mitochondria and endoplasmic reticulum in neurons is regulated by microtubules. From mitochondrial permeability transition pore to Ca2+-induced Ca2+ release. J Biol Chem. 2005;280:715–21.

    PubMed  CAS  Google Scholar 

  60. Armstrong JS. Mitochondrial membrane permeabilization: the sine qua non for cell death. Bioessays. 2006;28:253–60.

    Article  PubMed  CAS  Google Scholar 

  61. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science. 2004;305:626–9.

    Article  PubMed  CAS  Google Scholar 

  62. Snodderly DM. Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am J Clin Nutr. 1995;62:1448S–61S.

    PubMed  CAS  Google Scholar 

  63. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11:81–128.

    Article  PubMed  CAS  Google Scholar 

  64. Srivastava S, Chandra A, Bhatnagar A, Srivastava SK, Ansari NH. Lipid peroxidation product, 4-hydroxynonenal and its conjugate with GSH are excellent substrates of bovine lens aldose reductase. Biochem Biophys Res Commun. 1995;217:741–6.

    Article  PubMed  CAS  Google Scholar 

  65. Tate Jr DJ, Miceli MV, Newsome DA. Phagocytosis and H2O2 induce catalase and metallothionein gene expression in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1995;36:1271–9.

    PubMed  Google Scholar 

  66. Gaillard ER, Atherton SJ, Eldred G, Dillon J. Photophysical studies on human retinal lipofuscin. Photochem Photobiol. 1995;61:448–53.

    Article  PubMed  CAS  Google Scholar 

  67. Rozanowska M, Jarvis-Evans J, Korytowski W, Boulton ME, Burke JM, et al. Blue light-induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species. J Biol Chem. 1995;270:18825–30.

    Article  PubMed  CAS  Google Scholar 

  68. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E. Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci. 2008;9:505–18.

    Article  PubMed  CAS  Google Scholar 

  69. Bereiter-Hahn J, Vöth M. Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech. 1994;27:198–219.

    Article  PubMed  CAS  Google Scholar 

  70. Bertoni-Freddari C, Fattoretti P, Casoli T, Spagna C, Meier-Ruge W, et al. Morphological plasticity of synaptic mitochondria during aging. Brain Res. 1993;628:193–200.

    Article  PubMed  CAS  Google Scholar 

  71. Bertoni-Freddari C, Fattoretti P, Casoli T, Di Stefano G, Solazzi M, et al. Quantitative cytochemical mapping of mitochondrial enzymes in rat cerebella. Micron. 2001;32:405–10.

    Article  PubMed  CAS  Google Scholar 

  72. Ko YH, Delannoy M, Hullihen J, Chiu W, Pedersen PL. Mitochondrial ATP synthasome. Cristae-enriched membranes and a multiwell detergent screening assay yield dispersed single complexes containing the ATP synthase and carriers for Pi and ADP/ATP. J Biol Chem. 2003;278:12305–9.

    Article  PubMed  CAS  Google Scholar 

  73. Gavin PD, Prescott M, Luff SE, Devenish RJ. Cross-linking ATP synthase complexes in vivo eliminates mitochondrial cristae. J Cell Sci. 2004;117:2333–43.

    Article  PubMed  CAS  Google Scholar 

  74. Bertoni-Freddari C, Balietti M, Giorgetti B, et al. Selective decline of the metabolic competence of oversized synaptic mitochondria in the old monkey cerebellum. Rejuvenation Res. 2008;11:387–91.

    Article  PubMed  CAS  Google Scholar 

  75. Melov S. Modeling mitochondrial function in aging neurons. Trends Neurosci. 2004;27:601–6.

    Article  PubMed  CAS  Google Scholar 

  76. Karbowski M, Kurono C, Wozniak M, et al. Free radical-induced megamitochondria formation and apoptosis. Free Radic Biol Med. 1999;26:396–409.

    Article  PubMed  CAS  Google Scholar 

  77. Wakabayashi T. Megamitochondria formation—physiology and pathology. J Cell Mol Med. 2002;6:497–538.

    Article  PubMed  CAS  Google Scholar 

  78. Solmi R, Pallotti F, Rugolo M, et al. Lack of major mitochondrial bioenergetic changes in cultured skin fibroblasts from aged individuals. Biochem Mol Biol Int. 1994;33:477–84.

    PubMed  CAS  Google Scholar 

  79. Bertoni-Freddari C, Fattoretti P, Paoloni R, Caselli U, Giorgetti B, et al. Inverse correlation between mitochondrial size and metabolic competence: a quantitative cytochemical study of cytochrome oxidase activity. Naturwissenschaften. 2003;90:68–71.

    PubMed  CAS  Google Scholar 

  80. Bertoni-Freddari C, Fattoretti P, Giorgetti B, Spazzafumo L, Solazzi M, et al. Age-related decline in metabolic competence of small and medium-sized synaptic mitochondria. Naturwissenschaften. 2005;92:82–5.

    Article  PubMed  CAS  Google Scholar 

  81. Sastre J, Pallardó FV, García de la Asunción J, Viña J. Mitochondria, oxidative stress and aging. Free Radic Res. 2000;32:189–98.

    Article  PubMed  CAS  Google Scholar 

  82. Barja G. Free radicals and aging. Trends Neurosci. 2004;27:595–600.

    Article  PubMed  CAS  Google Scholar 

  83. Newsome DA, Dobard EP, Liles MR, Oliver PD. Human retinal pigment epithelium contains two distinct species of superoxide dismutase. Invest Ophthalmol Vis Sci. 1990;31:2508–13.

    PubMed  CAS  Google Scholar 

  84. Beatty S, Murray IJ, Henson DB, Carden D, Koh H, et al. Macular pigment and risk for age-related macular degeneration in subjects from a Northern European population. Invest Ophthalmol Vis Sci. 2001;42:439–46.

    PubMed  CAS  Google Scholar 

  85. Liles MR, Newsome DA, Oliver PD. Antioxidant enzymes in the aging human retinal pigment epithelium. Arch Ophthalmol. 1991;109:1285–8.

    Article  PubMed  CAS  Google Scholar 

  86. Tate Jr DJ, Newsome DA, Oliver PD. Metallothionein shows an age-related decrease in human macular retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1993;34:2348–51.

    PubMed  Google Scholar 

  87. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signaling. Nature. 2000;1:11–21.

    CAS  Google Scholar 

  88. Jackson JG, Thayer SA. Mitochondrial modulation of Ca2+-induced Ca2+-release in rat sensory neurons. J Neurophysiol. 2006;96:1093–104.

    Article  PubMed  CAS  Google Scholar 

  89. Dahlem YA, Wolf G, Siemen D, Horn TF. Combined modulation of the mitochondrial ATP-dependent potassium channel and the permeability transition pore causes prolongation of the biphasic calcium dynamics. Cell Calcium. 2006;39:387–400.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ben Franklin Foundation, PA, USA, the National Basic Research Program of China (no. 2007CB512200), and the National Natural Science Foundation of China (no. 30672275, no. 30400486), NEI Core Grant P30 EY01931, and an unrestricted grant from Research to Prevent Blindness, Inc. to the Medical College of Wisconsin, and by grants from Shaanxi Province Departments of Health (no. 2010D56) and Education (no. 2010JK807), China. The first author received support from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Ge or Joyce Tombran-Tink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Ge, J., Burke, J.M. et al. Mitochondria impairment correlates with increased sensitivity of aging RPE cells to oxidative stress. j ocul biol dis inform 3, 92–108 (2010). https://doi.org/10.1007/s12177-011-9061-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12177-011-9061-y

Keywords

Navigation