Skip to main content

Advertisement

Log in

Debate: Testosterone Therapy Reduces Cardiovascular Risk in Men with Diabetes. Against the Motion

Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Observationally, men with low testosterone are more vulnerable to type 2 diabetes (T2DM). In meta-analysis of, albeit small, randomized controlled trials (RCTs) giving men testosterone improves glucose metabolism. T2DM predicts cardiovascular disease; improving glucose metabolism could be expected to reduce cardiovascular disease risk. Taken together, trials have not shown clearly that commonly used agents for glucose reduction also reduce cardiovascular risk substantially, although some treatments for T2DM, such as insulin and sulfonylureas may raise testosterone. Testosterone has never been tested as a strategy for cardiovascular disease prevention or treatment in men with T2DM. Meta-analysis of RCTs in men suggests that testosterone administration has no effect on cardiovascular events or increases cardiovascular-related events, perhaps because testosterone promotes coagulability. Regulators have warned of cardiovascular risk on testosterone and/or suggested prescription of testosterone be restricted. As such, testosterone is unlikely to be an effective means of reducing cardiovascular risk in men with T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Braun SR. Promoting “low T”: a medical writer’s perspective. JAMA Int Med. 2013;173:1458–60.

    Article  Google Scholar 

  2. Bhasin S, Cunningham GR, Hayes FJ, et al. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2010;95:2536–59.

    Article  CAS  PubMed  Google Scholar 

  3. FDA. FDA adding general warning to testosterone products about potential for venous blood clots. http://www.fda.gov/Drugs/DrugSafety/ucm401746.htm. Accessed 19 Jun 2014.

  4. Health Canada. Information update—possible cardiovascular problems associated with testosterone products. http://healthycanadians.gc.ca/recall-alert-rappel-avis/hc-sc/2014/40587a-eng.php. Accessed 15 Jul 2014.

  5. FDA Drug Safety Communication: FDA cautions about using testosterone products for low testosterone due to aging; requires labeling change to inform of possible increased risk of heart attack and stroke with use. http://www.fda.gov/Drugs/DrugSafety/ucm436259.htm. Accessed 3 Mar 2015.

  6. http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2014/04/news_detail_002069.jsp&mid=WC0b01ac058004d5c1. Accessed 8 Aug 2014.

  7. Handelsman DJ. Global trends in testosterone prescribing, 2000–2011: expanding the spectrum of prescription drug misuse. Med J Aust. 2013;199:548–51. Provides a very informative summary of the global trends in testosterone prescription.

    Article  PubMed  Google Scholar 

  8. Chicagobusines. AndroGel giving AbbVie performance anxiety. http://www.chicagobusiness.com/article/20141122/ISSUE01/311229982/androgel-giving-abbvie-performance-anxiety. 11-22-2014.

  9. Cai X, Tian Y, Wu T, Cao CX, Li H, Wang KJ. Metabolic effects of testosterone replacement therapy on hypogonadal men with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Asian J Androl. 2014;16:146–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Ding EL, Song Y, Malik VS, Liu S. Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2006;295:1288–99.

    Article  CAS  PubMed  Google Scholar 

  11. Holmes MV, Lange LA, Palmer T, et al. Causal effects of body mass index on cardiometabolic traits and events: a Mendelian randomization analysis. Am J Hum Genet. 2014;94:198–208.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Legro RS, Kunselman AR, Meadows JW, et al. Time-related increase in urinary testosterone levels and stable semen analysis parameters after bariatric surgery in men. Reprod Biomed Online 2015;30:150–6.

  13. Botella-Carretero JI, Balsa JA, Gomez-Martin JM, et al. Circulating free testosterone in obese men after bariatric surgery increases in parallel with insulin sensitivity. J Endocrinol Investig. 2013;36:227–32.

    CAS  Google Scholar 

  14. Reis LO, Favaro WJ, Barreiro GC, et al. Erectile dysfunction and hormonal imbalance in morbidly obese male is reversed after gastric bypass surgery: a prospective randomized controlled trial. Int J Androl. 2010;33:736–44.

    Article  CAS  PubMed  Google Scholar 

  15. Schulte DM, Hahn M, Oberhauser F, et al. Caloric restriction increases serum testosterone concentrations in obese male subjects by two distinct mechanisms. Horm Metab Res. 2014;46:283–6.

    CAS  PubMed  Google Scholar 

  16. Finkelstein JS, Lee H, Burnett-Bowie SA, et al. Gonadal steroids and body composition, strength, and sexual function in men. N Engl J Med. 2013;369:1011–22. Gives a very comprehensive assessment of the role of testosterone in body composition using an experimental design and considering the role of estrogen.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Mizgier ML, Casas M, Contreras-Ferrat A, Llanos P, Galgani JE. Potential role of skeletal muscle glucose metabolism on the regulation of insulin secretion. Obes Rev. 2014;15:587–97.

    Article  CAS  PubMed  Google Scholar 

  18. Strasser B, Siebert U, Schobersberger W. Resistance training in the treatment of the metabolic syndrome: a systematic review and meta-analysis of the effect of resistance training on metabolic clustering in patients with abnormal glucose metabolism. Sports Med. 2010;40:397–415.

    Article  PubMed  Google Scholar 

  19. Oertelt-Prigione S. The influence of sex and gender on the immune response. Autoimmun Rev. 2012;11:A479–85.

    Article  CAS  PubMed  Google Scholar 

  20. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11:98–107.

    Article  CAS  PubMed  Google Scholar 

  21. Nguyen PL, Alibhai SM, Basaria S, et al. Adverse effects of androgen deprivation therapy and strategies to mitigate them. Eur Urol. 2014 Aug 2. doi:10.1016/j.eururo.2014.07.010

  22. Groth KA, Skakkebaek A, Host C, Gravholt CH, Bojesen A. Clinical review: Klinefelter syndrome—a clinical update. J Clin Endocrinol Metab. 2013;98:20–30.

    Article  CAS  PubMed  Google Scholar 

  23. Boyanov MA, Boneva Z, Christov VG. Testosterone supplementation in men with type 2 diabetes, visceral obesity and partial androgen deficiency. Aging Male. 2003;6:1–7.

    Article  CAS  PubMed  Google Scholar 

  24. Kapoor D, Goodwin E, Channer KS, Jones TH. Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur J Endocrinol. 2006;154:899–906.

    Article  CAS  PubMed  Google Scholar 

  25. Heufelder AE, Saad F, Bunck MC, Gooren L. Fifty-two-week treatment with diet and exercise plus transdermal testosterone reverses the metabolic syndrome and improves glycemic control in men with newly diagnosed type 2 diabetes and subnormal plasma testosterone. J Androl. 2009;30:726–33.

    Article  CAS  PubMed  Google Scholar 

  26. Gopal RA, Bothra N, Acharya SV, et al. Treatment of hypogonadism with testosterone in patients with type 2 diabetes mellitus. Endocr Pract. 2010;16:570–6.

    Article  PubMed  Google Scholar 

  27. Jones TH, Arver S, Behre HM, et al. Testosterone replacement in hypogonadal men with type 2 diabetes and/or metabolic syndrome (the TIMES2 study). Diabetes Care. 2011;34:828–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Hackett G, Cole N, Bhartia M, Kennedy D, Raju J, Wilkinson P. Testosterone replacement therapy improves metabolic parameters in hypogonadal men with type 2 diabetes but not in men with coexisting depression: the BLAST study. J Sex Med. 2014;11:840–56.

    Article  CAS  PubMed  Google Scholar 

  29. Gianatti EJ, Dupuis P, Hoermann R, et al. Effect of testosterone treatment on glucose metabolism in men with type 2 diabetes: a randomized controlled trial. Diabetes Care. 2014;37:2098–107.

    Article  CAS  PubMed  Google Scholar 

  30. Grossmann M, Hoermann R, Wittert G, Yeap BB. Effects of testosterone treatment on glucose metabolism and symptoms in men with type 2 diabetes and the metabolic syndrome: a systematic review and meta-analysis of randomized controlled clinical trials. Clin Endocrinol (Oxf). 2014 Dec 29. doi:10.1111/cen.12664

  31. Sarwar N, Gao P, Seshasai SR, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215–22.

    Article  CAS  PubMed  Google Scholar 

  32. Xun P, Wu Y, He Q, He K. Fasting insulin concentrations and incidence of hypertension, stroke, and coronary heart disease: a meta-analysis of prospective cohort studies. Am J Clin Nutr. 2013;98:1543–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Khaw KT, Wareham N. Glycated hemoglobin as a marker of cardiovascular risk. Curr Opin Lipidol. 2006;17:637–43.

    Article  CAS  PubMed  Google Scholar 

  34. Testosterone and Aging: Clinical Research Directions. Institute of Medicine (US) Committee on Assessing the Need for Clinical Trials of Testosterone Replacement Therapy. Washington : National Academies Press, 2004.

  35. Benn M, Tybjaerg-Hansen A, McCarthy MI, Jensen GB, Grande P, Nordestgaard BG. Nonfasting glucose, ischemic heart disease, and myocardial infarction: a Mendelian randomization study. J Am Coll Cardiol. 2012;59:2356–65.

    Article  CAS  PubMed  Google Scholar 

  36. Whitfield JB. Genetic insights into cardiometabolic risk factors. Clin Biochem Rev. 2014;35:15–36.

    PubMed Central  PubMed  Google Scholar 

  37. Holman RR, Sourij H, Califf RM. Cardiovascular outcome trials of glucose-lowering drugs or strategies in type 2 diabetes. Lancet. 2014;383:2008–17. Gives a very comprehensive assessment of the effects of glucose lowering treatments on cardiovascular events along with information about forthcoming trials.

    Article  CAS  PubMed  Google Scholar 

  38. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–89.

    Article  CAS  PubMed  Google Scholar 

  39. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366:1279–89.

    Article  CAS  PubMed  Google Scholar 

  40. Gerstein HC, Miller ME, Genuth S, et al. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med. 2011;364:818–28.

    Article  CAS  PubMed  Google Scholar 

  41. Hemmingsen B, Lund SS, Gluud C, et al. Targeting intensive glycaemic control versus targeting conventional glycaemic control for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2013;11, CD008143.

    PubMed  Google Scholar 

  42. Buehler AM, Cavalcanti AB, Berwanger O, et al. Effect of tight blood glucose control versus conventional control in patients with type 2 diabetes mellitus: a systematic review with meta-analysis of randomized controlled trials. Cardiovasc Ther. 2013;31:147–60.

    Article  CAS  PubMed  Google Scholar 

  43. Vijan S, Sussman JB, Yudkin JS, Hayward RA. Effect of patients’ risks and preferences on health gains with plasma glucose level lowering in type 2 diabetes mellitus. JAMA Int Med. 2014;174:1227–34.

    Article  Google Scholar 

  44. Boussageon R, Supper I, Bejan-Angoulvant T, et al. Reappraisal of metformin efficacy in the treatment of type 2 diabetes: a meta-analysis of randomised controlled trials. PLoS Med. 2012;9:e1001204.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Gerstein HC, Bosch J, Dagenais GR, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012;367:319–28.

    Article  CAS  PubMed  Google Scholar 

  46. Hemmingsen B, Schroll JB, Lund SS, et al. Sulphonylurea monotherapy for patients with type 2 diabetes mellitus. Cochrane Database Syst Rev. 2013;4, CD009008.

    PubMed  Google Scholar 

  47. Ehrenstein V, Hernandez RK, Ulrichsen SP, et al. Rosiglitazone use and post-discontinuation glycaemic control in two European countries, 2000–2010. BMJ Open. 2013;3:e003424.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Mannucci E, Monami M, Lamanna C, Gensini GF, Marchionni N. Pioglitazone and cardiovascular risk. A comprehensive meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2008;10:1221–38.

    Article  CAS  PubMed  Google Scholar 

  49. Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369:1317–26.

    Article  CAS  PubMed  Google Scholar 

  50. White WB, Cannon CP, Heller SR, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369:1327–35.

    Article  CAS  PubMed  Google Scholar 

  51. Tong G, Hua X, Zhong Y, et al. Intensive insulin therapy increases sex hormone-binding globulin in newly diagnosed type 2 diabetic patients. Eur J Endocrinol. 2014;170:237–45.

    Article  CAS  PubMed  Google Scholar 

  52. Wong L, Chen H, Lai S, Yang H, Kunag J, Pei J. Effects of sulfonylurea as initial treatment on testosterone of middle-aged men with type 2 diabetes: a 16-week, pilot study. J Diabetes Investig. 2014 15th Dec. doi:10.1111/jdi.12324.

  53. Kapoor D, Channer KS, Jones TH. Rosiglitazone increases bioactive testosterone and reduces waist circumference in hypogonadal men with type 2 diabetes. Diabetes Vasc Dis Res. 2008;5:135–7.

    Article  Google Scholar 

  54. Schooling CM, Au Yeung SL, Freeman G, Cowling BJ. The effect of statins on testosterone in men and women, a systematic review and meta-analysis of randomized controlled trials. BMC Med. 2013;11:57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Preiss D, Seshasai SR, Welsh P, et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA. 2011;305:2556–64.

    Article  CAS  PubMed  Google Scholar 

  56. de Vries FM, Kolthof J, Postma MJ, Denig P, Hak E. Efficacy of standard and intensive statin treatment for the secondary prevention of cardiovascular and cerebrovascular events in diabetes patients: a meta-analysis. PLoS One. 2014;9:e111247.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Fernandez-Balsells MM, Murad MH, Lane M, et al. Clinical review 1: adverse effects of testosterone therapy in adult men: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2010;95:2560–75.

    Article  CAS  PubMed  Google Scholar 

  58. Elraiyah T, Sonbol MB, Wang Z, et al. Clinical review: the benefits and harms of systemic testosterone therapy in postmenopausal women with normal adrenal function: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2014;99:3543–50.

    Article  CAS  PubMed  Google Scholar 

  59. Zhao J, Jiang C, Lam TH, et al. Genetically predicted testosterone and cardiovascular risk factors in men: a Mendelian randomization analysis in the Guangzhou Biobank Cohort Study. Int J Epidemiol. 2014;43:140–8.

    Article  PubMed  Google Scholar 

  60. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.

    Article  PubMed  Google Scholar 

  61. Kannel WB, Kannel C, Paffenbarger Jr RS, Cupples LA. Heart rate and cardiovascular mortality: the Framingham Study. Am Heart J. 1987;113:1489–94.

    Article  CAS  PubMed  Google Scholar 

  62. Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:2889–934.

    Article  PubMed  Google Scholar 

  63. Wang Y, Lammi-Keefe CJ, Hou L, Hu G. Impact of low-density lipoprotein cholesterol on cardiovascular outcomes in people with type 2 diabetes: a meta-analysis of prospective cohort studies. Diabetes Res Clin Pract. 2013;102:65–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Voight BF, Peloso GM, Orho-Melander M, et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet. 2012;380:572–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Keene D, Price C, Shun-Shin MJ, Francis DP. Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: meta-analysis of randomised controlled trials including 117,411 patients. BMJ. 2014;349:g4379.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Wing RR, Bolin P, Brancati FL, et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013;369:145–54.

    Article  CAS  PubMed  Google Scholar 

  67. Schooling CM, Au Yeung SL, Leung GM. Why do statins reduce cardiovascular disease more than other lipid modulating therapies? Eur J Clin Investig. 2014;44:1135–40.

    Article  Google Scholar 

  68. Turnbull F, Neal B, Algert C, et al. Effects of different blood pressure-lowering regimens on major cardiovascular events in individuals with and without diabetes mellitus: results of prospectively designed overviews of randomized trials. Arch Intern Med. 2005;165:1410–9.

    Article  PubMed  Google Scholar 

  69. Basaria S, Davda MN, Travison TG, Ulloor J, Singh R, Bhasin S. Risk factors associated with cardiovascular events during testosterone administration in older men with mobility limitation. J Gerontol A Biol Sci Med Sci. 2013;2:153–60.

  70. Webb CM, Elkington AG, Kraidly MM, Keenan N, Pennell DJ, Collins P. Effects of oral testosterone treatment on myocardial perfusion and vascular function in men with low plasma testosterone and coronary heart disease. Am J Cardiol. 2008;101:618–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Smith AM, English KM, Malkin CJ, Jones RD, Jones TH, Channer KS. Testosterone does not adversely affect fibrinogen or tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) levels in 46 men with chronic stable angina. Eur J Endocrinol. 2005;152:285–91.

    Article  CAS  PubMed  Google Scholar 

  72. Ajayi AA, Halushka PV. Castration reduces platelet thromboxane A2 receptor density and aggregability. QJM. 2005;98:349–56.

    Article  CAS  PubMed  Google Scholar 

  73. Ajayi AA, Mathur R, Halushka PV. Testosterone increases human platelet thromboxane A2 receptor density and aggregation responses. Circulation. 1995;91:2742–7.

    Article  CAS  PubMed  Google Scholar 

  74. Burch GE, Depasquale NP. The hematocrit in patients with myocardial infarction. JAMA. 1962;180:62–3.

  75. Marchioli R, Finazzi G, Specchia G, et al. Cardiovascular events and intensity of treatment in polycythemia vera. N Engl J Med. 2013;368:22–33.

    Article  CAS  PubMed  Google Scholar 

  76. Coyne DW. The health-related quality of life was not improved by targeting higher hemoglobin in the Normal Hematocrit Trial. Kidney Int. 2012;82:235–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Wang CH, Schilling RF. Myocardial infarction and thalassemia trait: an example of heterozygote advantage. Am J Hematol. 1995;49:73–5.

    Article  CAS  PubMed  Google Scholar 

  78. Manganelli G, Masullo U, Passarelli S, Filosa S. Glucose-6-phosphate dehydrogenase deficiency: disadvantages and possible benefits. Cardiovasc Hematol Disord Drug Targets. 2013;13:73–82.

    Article  CAS  PubMed  Google Scholar 

  79. Zhao J, Jiang C, Lam TH, et al. Genetically predicted testosterone and electrocardiographic QT interval duration in Chinese: a Mendelian randomization analysis in the Guangzhou Biobank Cohort Study. Int J Epidemiol. 2014 Dec 14. pii: dyu241.

  80. van Noord C, Dorr M, Sturkenboom MC, et al. The association of serum testosterone levels and ventricular repolarization. Eur J Epidemiol. 2010;25:21–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Zhang Y, Ouyang P, Post WS, et al. Sex-steroid hormones and electrocardiographic QT-interval duration: findings from the third National Health and Nutrition Examination Survey and the Multi-Ethnic Study of Atherosclerosis. Am J Epidemiol. 2011;174:403–11.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Algra A, Tijssen JG, Roelandt JR, Pool J, Lubsen J. QTc prolongation measured by standard 12-lead electrocardiography is an independent risk factor for sudden death due to cardiac arrest. Circulation. 1991;83:1888–94.

    Article  CAS  PubMed  Google Scholar 

  83. Schooling CM, Zhao J, Zhang Y. The association of androgens with QT interval and heart rate in US men. Int J Cardiol. 2014;177:592–4.

    Article  PubMed  Google Scholar 

  84. Ruige JB, Mahmoud AM, De BD, Kaufman JM. Endogenous testosterone and cardiovascular disease in healthy men: a meta-analysis. Heart. 2011;97:870–5.

    Article  CAS  PubMed  Google Scholar 

  85. Araujo AB, Dixon JM, Suarez EA, Murad MH, Guey LT, Wittert GA. Clinical review: endogenous testosterone and mortality in men: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2011;96:3007–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Xu L, Freeman G, Cowling BJ, Schooling CM. Testosterone therapy and cardiovascular events among men: a systematic review and meta-analysis of placebo-controlled randomized trials. BMC Med. 2013;11:108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Suissa S. Randomized trials built on sand: examples from COPD, hormone therapy, and cancer. Rambam Maimonides Med J. 2012;3:e0014. Explains very clearly a tricky and commonly misunderstood bias which can undermine the validity of observational studies assessing treatments effects.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Hanley JA, Foster BJ. Avoiding blunders involving ‘immortal time’. Int J Epidemiol. 2014;43:949–61.

    Article  PubMed  Google Scholar 

  89. Suissa S, Azoulay L. Metformin and the risk of cancer: time-related biases in observational studies. Diabetes Care. 2012;35:2665–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Muraleedharan V, Marsh H, Kapoor D, Channer KS, Jones TH. Testosterone deficiency is associated with increased risk of mortality and testosterone replacement improves survival in men with type 2 diabetes. Eur J Endocrinol. 2013;169:725–33.

    Article  CAS  PubMed  Google Scholar 

  91. Shores MM, Smith NL, Forsberg CW, Anawalt BD, Matsumoto AM. Testosterone treatment and mortality in men with low testosterone levels. J Clin Endocrinol Metab. 2012;97:2050–8.

    Article  CAS  PubMed  Google Scholar 

  92. Vigen R, O’Donnell CI, Baron AE, et al. Association of testosterone therapy with mortality, myocardial infarction, and stroke in men with low testosterone levels. JAMA. 2013;310:1829–36.

    Article  CAS  PubMed  Google Scholar 

  93. Morgentaler A, Traish A, Kacker R. Deaths and cardiovascular events in men receiving testosterone. JAMA. 2014;311:961–2.

    Article  CAS  PubMed  Google Scholar 

  94. Morgentaler A, Kacker R. Andrology: testosterone and cardiovascular risk—deciphering the statistics. Nat Rev Urol. 2014;11:131–2.

    Article  CAS  PubMed  Google Scholar 

  95. Page ST. Testosterone, cardiovascular disease, and mortality in men: living in the dark. Lancet Diabetes Endocrinol. 2014;2:609–11.

    Article  PubMed  Google Scholar 

  96. Baillargeon J, Urban RJ, Kuo YF, et al. Risk of myocardial infarction in older men receiving testosterone therapy. Ann Pharmacother. 2014;48:1138–44.

    Article  CAS  PubMed  Google Scholar 

  97. Finkle WD, Greenland S, Ridgeway GK, et al. Increased risk of non-fatal myocardial infarction following testosterone therapy prescription in men. PLoS One. 2014;9:e85805.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Nguyen PL, Je Y, Schutz FA, et al. Association of androgen deprivation therapy with cardiovascular death in patients with prostate cancer: a meta-analysis of randomized trials. JAMA. 2011;306:2359–66.

    Article  CAS  PubMed  Google Scholar 

  99. Albertsen PC, Klotz L, Tombal B, Grady J, Olesen TK, Nilsson J. Cardiovascular morbidity associated with gonadotropin releasing hormone agonists and an antagonist. Eur Urol. 2014;65:565–73.

    Article  CAS  PubMed  Google Scholar 

  100. Swerdlow AJ, Higgins CD, Schoemaker MJ, Wright AF, Jacobs PA. Mortality in patients with Klinefelter syndrome in Britain: a cohort study. J Clin Endocrinol Metab. 2005;90:6516–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

C. Mary Schooling, Lin Xu, and Jie Zhao have no relevant disclosures to report.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Mary Schooling.

Additional information

This article is part of the Topical Collection on Diabetes and Insulin Resistance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schooling, C.M., Xu, L. & Zhao, J. Debate: Testosterone Therapy Reduces Cardiovascular Risk in Men with Diabetes. Against the Motion. Curr Cardiovasc Risk Rep 9, 21 (2015). https://doi.org/10.1007/s12170-015-0449-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12170-015-0449-2

Keywords

Navigation