Skip to main content
Log in

Coronary CT Angiographic Measures of Adverse Atherosclerotic Plaque Features

  • Novel and Emerging Risk Factors (N Wong and C Lewis, Section Editors)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

The incidence of coronary artery disease (CAD) is extremely high and increasing, and is one of serious health issues in the word. Since acute myocardial infarction (AMI) is one of the main causes of cardiac death, the modalities to forestall AMI should be required. Less than 50% of subjects presenting with AMI, however, do not have premonitory symptoms, and many lesions that lead AMI are not significant severity stenosis. In this regard, the gold standard methods to assess CAD, such as invasive coronary disease or conventional stress testing, may not be able to detect these high-risk plaque features, the so-called adverse plaque. Coronary computed tomographic angiography (CCTA) is an emerging modality to detect the presence, extent, and severity of CAD as well as plaque characteristics. Several recent studies investigated the utility of CCTA for adverse plaque. The current review summarizes the detection, assessment, and risk stratification of adverse plaque by CCTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G. Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation. 2010;121:e46–215.

    Google Scholar 

  2. Castelli WP. Lipids, risk factors and ischaemic heart disease. Atherosclerosis. 1996;124(Suppl):S1–9.

    Article  PubMed  CAS  Google Scholar 

  3. Ambrose JA, Tannenbaum MA, Alexopoulos D, Hjemdahl-Monsen CE, Leavy J, Weiss M. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol. 1988;12:56–62.

    Article  PubMed  CAS  Google Scholar 

  4. Braunwald E. Acute myocardial infarction—the value of being prepared. N Engl J Med. 1996;334:51–2.

    Article  PubMed  CAS  Google Scholar 

  5. Harper RW, Kennedy G, DeSanctis RW, Hutter AM Jr. The incidence and pattern of angina prior to acute myocardial infarction: a study of 577 cases. Am Heart J. 1979;97:178–83.

    Google Scholar 

  6. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47:C13–8.

    Article  PubMed  CAS  Google Scholar 

  7. Hong MK, Mintz GS, Lee CW, Lee BK, Yang TH, Kim YH, et al. The site of plaque rupture in native coronary arteries: a 3-vessel intravascular ultrasound analysis. J Am Coll Cardiol. 2005;46:261–5.

    Article  PubMed  Google Scholar 

  8. Arbustini E, Dal Bello B, Morbini P, Burke AP, Bocciarelli M, Specchia G, et al. Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction. Heart. 1999;82:269–72.

    PubMed  CAS  Google Scholar 

  9. Fuster V, Stein B, Ambrose JA, Badimon L, Badimon JJ, Chesebro JH. Atherosclerotic plaque rupture and thrombosis. Evolving concepts. Circulation. 1990;82(II):47–59.

    Google Scholar 

  10. •• FinnA V, Nakano M, Narula J, Kolodgie FD, Virmani R. Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol. 2010;30:1282–92. Review describing the details of vulnerable plaque.

  11. Narula J, Strauss HW. The popcorn plaques. Nat Med. 2007;13:532–4.

    Article  PubMed  CAS  Google Scholar 

  12. Burke AP, Kolodgie FD, Farb A, Weber D, Virmani R. Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation. 2002;105:297–303.

    Article  PubMed  Google Scholar 

  13. Muller JE, Kaufmann PG, Luepker RV, Weisfeldt ML, Deedwania PC, Willerson JT. Mechanisms precipitating acute cardiac events: review and recommendations of an NHLBI workshop. National Heart, Lung, and Blood Institute. Mechanisms precipitating acute cardiac events participants. Circulation. 1997;96:3233–9.

    Article  PubMed  CAS  Google Scholar 

  14. Fujii K, Carlier SG, Mintz GS, Wijns W, Colombo A, Böse D, et al. Association of plaque characterization by intravascular ultrasound virtual histology and arterial remodeling. Am J Cardiol. 2005;96:1476–83.

    Article  PubMed  Google Scholar 

  15. Rathore S, Terashima M, Matsuo H, Kinoshita Y, Kimura M, Tsuchikane E, et al. Association of coronary plaque composition and arterial remodelling: an optical coherence tomography study. Atherosclerosis. 2012;221:405–15.

    Article  PubMed  CAS  Google Scholar 

  16. Yonetsu T, Kakuta T, Lee T, Takahashi K, Kawaguchi N, Yamamoto G, et al. In vivo critical fibrous cap thickness for rupture-prone coronary plaques assessed by optical coherence tomography. Eur Heart J. 2011;32:1251–9.

    Article  PubMed  Google Scholar 

  17. Schoenhagen P, Ziada KM, Kapadia SR, Crowe TD, Nissen SE, Tuzcu EM. Extent and direction of arterial remodeling in stable vs unstable coronary syndromes: an intravascular ultrasound study. Circulation. 2000;101:598–603.

    Article  PubMed  CAS  Google Scholar 

  18. Ehara S, Kobayashi Y, Yoshiyama M, Shimada K, Shimada Y, Fukuda D, et al. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation. 2004;110:3424–9.

    Article  PubMed  Google Scholar 

  19. Hasegawa T, Ehara S, Kobayashi Y, Kataoka T, Yamashita H, Nishioka H, et al. Acute myocardial infarction: clinical characteristics and plaque morphology between expansive remodeling and constrictive remodeling by intravascular ultrasound. Am Heart J. 2006;151:332–7.

    Google Scholar 

  20. Nasu K, Tsuchikane E, Katoh O, Vince DG, Virmani R, Surmely JF, et al. Accuracy of in vivo coronary plaque morphology assessment: a validation study of in vivo virtual histology compared with in vitro histopathology. J Am Coll Cardiol. 2006;47:2405–12.

    Article  PubMed  Google Scholar 

  21. Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology. 2003;228:826–33.

    Article  PubMed  Google Scholar 

  22. Budoff MJ, Shaw LJ, Liu ST, Weinstein SR, Mosler TP, Tseng PH, et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol. 2007;49:1860–70.

    Article  PubMed  Google Scholar 

  23. Morita H, Fujimoto S, Kondo T, Arai T, Sekine T, Matsutani H, et al. Prevalence of computed tomographic angiography-verified high-risk plaques and significant luminal stenosis in patients with zero coronary calcium score. Int J Cardiol. 2012;158:272–78.

    Google Scholar 

  24. Choi YH, Hong YJ, Park IH, Jeong MH, Ahmed K, Hwang SH, et al. Relationship between coronary artery calcium score by multidetector computed tomography and plaque components by virtual histology intravascular ultrasound. J Korean Med Sci. 2011;26:1052–60.

    Article  PubMed  Google Scholar 

  25. Ito T, Suzuki Y, Ehara M, Matsuo H, Teramoto T, Terashima M, Nasu K, et al. Impact of epicardial fat volume on coronary artery disease in symptomatic patients with a zero calcium score. Int J Cardiol. 2012. doi:10.1016/j.ijcard.2012.07.026

  26. •• van Velzen JE, de Graaf FR, Jukema JW, de Grooth GJ, Pundziute G, Kroft LJ, et al. Comparison of the relation between the calcium score and plaque characteristics in patients with acute coronary syndrome vs patients with stable coronary artery disease, assessed by computed tomography angiography and virtual histology intravascular ultrasound. Am J Cardiol. 2011;108:658–64. Adverse plaque characteristics in patients with ACS and calcium score zero.

    Article  PubMed  Google Scholar 

  27. Motoyama S, Kondo T, Anno H, Sugiura A, Ito Y, Mori K, et al. Atherosclerotic plaque characterization by 0.5-mm-slice multislice computed tomographic imaging. Circ J. 2007;71:363–6.

    Article  PubMed  Google Scholar 

  28. Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50:319–26.

    Article  PubMed  Google Scholar 

  29. Motoyama S, Sarai M, Harigaya H, Anno H, Inoue K, Hara T, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54:49–57.

    Article  PubMed  Google Scholar 

  30. Kitagawa T, Yamamoto H, Horiguchi J, Ohhashi N, Tadehara F, Shokawa T, et al. Characterization of noncalcified coronary plaques and identification of culprit lesions in patients with acute coronary syndrome by 64-slice computed tomography. JACC Cardiovasc Imaging. 2009;2:153–60.

    Article  PubMed  Google Scholar 

  31. Watabe H, Sato A, Akiyama D, Kakefuda Y, Adachi T, Ojima E, et al. Impact of coronary plaque composition on cardiac troponin elevation after percutaneous coronary intervention in stable angina pectoris: a computed tomography analysis. J Am Coll Cardiol. 2012;59:1881–8.

    Article  PubMed  CAS  Google Scholar 

  32. Cademartiri F, Mollet NR, Runza G, Bruining N, Hamers R, Somers P, et al. Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: observations in an ex vivo model of coronary computed tomography angiography. Eur Radiol. 2005;15:1426–31.

    Article  PubMed  Google Scholar 

  33. Cademartiri F, Runza G, Palumbo A, Maffei E, Martini C, McFadden E, et al. Lumen enhancement influences absolute noncalcific plaque density on multislice computed tomography coronary angiography: ex-vivo validation and in-vivo demonstration. J Cardiovasc Med. 2010;11:337–44.

    Article  Google Scholar 

  34. Dalager MG, Bøttcher M, Andersen G, Thygesen J, Pedersen EM, Dejbjerg L, et al. Impact of luminal density on plaque classification by CT coronary angiography. Int J Cardiovasc Imaging. 2011;27:593–600.

    Article  PubMed  Google Scholar 

  35. Cademartiri F, La Grutta L, Runza G, Palumbo A, Maffei E, Mollet NR, et al. Influence of convolution filtering on coronary plaque attenuation values: observations in an ex vivo model of multislice computed tomography coronary angiography. Eur Radiol. 2007;17:1842–9.

    Article  PubMed  Google Scholar 

  36. Achenbach S, Boehmer K, Pflederer T, Ropers D, Seltmann M, Lell M, et al. Influence of slice thickness and reconstruction kernel on the computed tomographic attenuation of coronary atherosclerotic plaque. J Cardiovasc Comput Tomogr. 2010;4:110–5.

    Article  PubMed  Google Scholar 

  37. Achenbach S, Ropers D, Hoffmann U, MacNeill B, Baum U, Pohle K, et al. Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography. J Am Coll Cardiol. 2004;43:842–7.

    Article  PubMed  Google Scholar 

  38. Imazeki T, Sato Y, Inoue F, Anazawa T, Tani S, Matsumoto N, et al. Evaluation of coronary artery remodeling in patients with acute coronary syndrome and stable angina by multislice computed tomography. Circ J. 2004;68:1045–50.

    Article  PubMed  Google Scholar 

  39. Schmid M, Pflederer T, Jang IK, Ropers D, Sei K, Daniel WG, et al. Relationship between degree of remodeling and CT attenuation of plaque in coronary atherosclerotic lesions: an in-vivo analysis by multi-detector computed tomography. Atherosclerosis. 2008;197:457–64.

    Article  PubMed  CAS  Google Scholar 

  40. Kitagawa T, Yamamoto H, Ohhashi N, Okimoto T, Horiguchi J, Hirai N, et al. Comprehensive evaluation of noncalcified coronary plaque characteristics detected using 64-slice computed tomography in patients with proven or suspected coronary artery disease. Am Heart J. 2007;154:1191–8.

    Article  PubMed  Google Scholar 

  41. •• Shmilovich H, Cheng VY, Tamarappoo BK, Dey D, Nakazato R, Gransar H, et al. Vulnerable plaque features on coronary CT angiography as markers of inducible regional myocardial hypoperfusion from severe coronary artery stenoses. Atherosclerosis. 2011;219:588–95. Manuscript demonstrating the correlation between adverse plaque features and ischemia.

    Article  PubMed  CAS  Google Scholar 

  42. Pflederer T, Marwan M, Schepis T, Ropers D, Seltmann M, Muschiol G, et al. Characterization of culprit lesions in acute coronary syndromes using coronary dual-source CT angiography. Atherosclerosis. 2010;211:437–44.

    Google Scholar 

  43. Leber AW, Becker A, Knez A, von Ziegler F, Sirol M, Nikolau K, et al. Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J Am Coll Cardiol. 2006;47:672–7.

    Article  PubMed  Google Scholar 

  44. van Velzen JE, de Graaf FR, de Graaf MA, Schuijf JD, Kroft LJ, de Roos A, et al. Comprehensive assessment of spotty calcifications on computed tomography angiography: comparison to plaque characteristics on intravascular ultrasound with radiofrequency backscatter analysis. J Nucl Cardiol. 2011;18:893–903.

    Google Scholar 

  45. Tanaka A, Shimada K, Yoshida K, Jissyo S, Tanaka H, Sakamoto M, et al. Noninvasive assessment of plaque rupture by 64-slice multidetector computed tomography—comparison with intravascular ultrasound. Circ J. 2008;72:1276–81.

    Google Scholar 

  46. Kashiwagi M, Tanaka A, Kitabata H, Tsjioka H, Kataiwa H, Komukai K, et al. Feasibility of noninvasive assessment of thin-cap fibroatheroma by multidetector computed tomography. JACC Cardiovasc Imaging. 2009;2:1412–9.

    Article  PubMed  Google Scholar 

  47. Maurovich-Horvat P, Hoffmann U, Vorpahl M, Nakano M, Virmani R, Alkadhi H. The napkin-ring sign: CT signature of high-risk coronary plaques? JACC Cardiovasc Imaging. 2010;3:440–4.

    Article  PubMed  Google Scholar 

  48. • Seifarth H, Schlett CL, Nakano M, Otsuka F, Karolyi M, Liew G, et al. Histopathological correlates of the napkin-ring sign plaque in coronary CT angiography. Atherosclerosis. 2012;224:90–6. Relationship between the napkin-ring sign and histopathology in seven patients.

    Article  PubMed  CAS  Google Scholar 

  49. Narula J, Achenbach S. Napkin-ring necrotic cores: defining circumferential extent of necrotic cores in unstable plaques. JACC Cardiovasc Imaging. 2009;2:1436–8.

    Article  PubMed  Google Scholar 

  50. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52:1724–32.

    Article  PubMed  Google Scholar 

  51. Meijboom WB, Meijs MF, Schuijf JD, Cramer MJ, Mollet NR, van Mieghem CA, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008;52:2135–44.

    Article  PubMed  Google Scholar 

  52. Achenbach S, Moselewski F, Ropers D, Ferencik M, Hoffmann U, MacNeill B, et al. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation. 2004;109:14–7.

    Article  PubMed  Google Scholar 

  53. Leber AW, Knez A, Becker A, Becker C, von Ziegler F, Nikolaou K, et al. Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: a comparative study with intracoronary ultrasound. J Am Coll Cardiol. 2004;43:1241–7.

    Article  PubMed  Google Scholar 

  54. Leber AW, Knez A, von Ziegler F, Becker A, Nikolaou K, Paul S, et al. Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol. 2005;46:147–54.

    Article  PubMed  Google Scholar 

  55. Voros S, Rinehart S, Qian Z, Vazquez G, Anderson H, Murrieta L, et al. Prospective validation of standardized, 3-dimensional, quantitative coronary computed tomographic plaque measurements using radiofrequency backscatter intravascular ultrasound as reference standard in intermediate coronary arterial lesions: results from the ATLANTA (assessment of tissue characteristics, lesion morphology, and hemodynamics by angiography with fractional flow reserve, intravascular ultrasound, and virtual histology, and noninvasive computed tomography in atherosclerotic plaques) I study. JACC Cardiovasc Interv. 2011;4:198–208.

    Article  PubMed  Google Scholar 

  56. • Boogers MJ, Broersen A, van Velzen JE, de Graaf FR, El-Naggar HM, Kitslaar PH, et al. Automated quantification of coronary plaque with computed tomography: comparison with intravascular ultrasound using a dedicated registration algorithm for fusion-based quantification. Eur Heart J. 2012;33:1007–16. Manuscript demonstrating the automated assessment of coronary plaque by CCTA with comparison to IVUS.

    Article  PubMed  Google Scholar 

  57. • Dey D, Schepis T, Marwan M, Slomka PJ, Berman DS, Achenbach S. Automated 3-dimensional quantification of noncalcified coronary plaque from coronary CT angiography: comparison with intravascular US. Radiology. 2010;257:516–22. Manuscript describing automated quantitative assessment of noncalcified coronary plaques with comparison to IVUS.

    Article  PubMed  Google Scholar 

  58. • Kröner ES, van Velzen JE, Boogers MJ, Siebelink HM, Schalij MJ, Kroft LJ, et al. Positive remodeling on coronary computed tomography as a marker for plaque vulnerability on virtual histology intravascular ultrasound. Am J Cardiol. 2011;107:1725–9. The investigators evaluated the relationship of positive remodeling of coronary plaque by CCTA to TCFA by IVUS.

    Article  PubMed  Google Scholar 

  59. Nakazawa G, Tanabe K, Onuma Y, Yachi S, Aoki J, Yamamoto H, et al. Efficacy of culprit plaque assessment by 64-slice multidetector computed tomography to predict transient no-reflow phenomenon during percutaneous coronary intervention. Am Heart J. 2008;155:1150–7.

    Article  PubMed  Google Scholar 

  60. Harigaya H, Motoyama S, Sarai M, Inoue K, Hara T, Okumura M, et al. Prediction of the no-reflow phenomenon during percutaneous coronary intervention using coronary computed tomography angiography. Hear Vessel. 2011;26:363–9.

    Article  Google Scholar 

  61. • Uetani T, Amano T, Kunimura A, Kumagai S, Ando H, Yokoi K, et al. The association between plaque characterization by CT angiography and postprocedural myocardial infarction in patients with elective stent implantation. JACC Cardiovasc Imaging. 2010;3:19–28. Manuscript showing relationship between adverse plaque characteristics on CCTA and complications during PCI.

    Article  PubMed  Google Scholar 

  62. Kodama T, Kondo T, Oida A, Fujimoto S, Narula J. Computed tomographic angiography-verified plaque characteristics and slow-flow phenomenon during percutaneous coronary intervention. JACC Cardiovasc Interv. 2012;5:636–43.

    Article  PubMed  Google Scholar 

  63. Hoffmann U, Moselewski F, Nieman K, Jang IK, Ferencik M, Rahman AM, et al. Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J Am Coll Cardiol. 2006;47:1655–62.

    Article  PubMed  Google Scholar 

  64. Motoyama S, Sarai M, Inoue K, Kawai H, Ito H, Harigaya H, et al. Morphologic and functional assessment of coronary artery disease. Circ J. 2013;77:411–7.

    Google Scholar 

  65. •• Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364:226–35. The investigators showed the natural history of coronary plaque by IVUS with respect to subsequent cardiac events.

    Article  PubMed  CAS  Google Scholar 

  66. • Min JK, Dunning A, Lin FY, Achenbach S, Al-Mallah M, Budoff MJ, et al. Age- and sex-related differences in all-cause mortality risk based on coronary computed tomography angiography findings results from the International Multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: an International Multicenter Registry) of 23,854 Patients Without Known Coronary Artery Disease. J Am Coll Cardiol. 2011;58:849–60. This study is a large international multicenter registry demonstrating the strong relationship between extent and severity of coronary stenosis on CCTA and mortality.

    Article  PubMed  Google Scholar 

  67. Fujimoto S, Kondo T, Kodama T, Orihara T, Sugiyama J, Kondo M, et al. Coronary computed tomography angiography-based coronary risk stratification in subjects presenting with no or atypical symptoms. Circ J. 2012;76:2419–25.

    Article  PubMed  Google Scholar 

  68. Okazaki S, Yokoyama T, Miyauchi K, Shimada K, Kurata T, Sato H, et al. Early statin treatment in patients with acute coronary syndrome: demonstration of the beneficial effect on atherosclerotic lesions by serial volumetric intravascular ultrasound analysis during half a year after coronary event: the ESTABLISH Study. Circulation. 2004;110:1061–8.

    Article  PubMed  CAS  Google Scholar 

  69. •• Inoue K, Motoyama S, Sarai M, Sato T, Harigaya H, Hara T, et al. Serial coronary CT angiography-verified changes in plaque characteristics as an end point: evaluation of effect of statin intervention. JACC Cardiovasc Imaging. 2010;3:691–8. Prospective study investigating the use of serial CCTA to assess efficacy of statin therapy.

    Article  PubMed  Google Scholar 

  70. Hiro T, Kimura T, Morimoto T, Miyauchi K, Nakagawa Y, Yamagishi M, et al. Effect of intensive statin therapy on regression of coronary atherosclerosis in patients with acute coronary syndrome: a multicenter randomized trial evaluated by volumetric intravascular ultrasound using pitavastatin vs atorvastatin (JAPAN-ACS [Japan assessment of pitavastatin and atorvastatin in acute coronary syndrome] study). J Am Coll Cardiol. 2009;54:293–302.

    Article  PubMed  Google Scholar 

  71. Takayama T, Hiro T, Yamagishi M, Daida H, Hirayama A, Saito S, et al. Effect of rosuvastatin on coronary atheroma in stable coronary artery disease: multicenter coronary atherosclerosis study measuring effects of rosuvastatin using intravascular ultrasound in Japanese subjects (COSMOS). Circ J. 2009;73:2110–7.

    Article  PubMed  CAS  Google Scholar 

  72. Kawasaki M, Sano K, Okubo M, Yokoyama H, Ito Y, Murata I, et al. Volumetric quantitative analysis of tissue characteristics of coronary plaques after statin therapy using 3-dimensional integrated backscatter intravascular ultrasound. J Am Coll Cardiol. 2005;45:1946–53.

    Article  PubMed  CAS  Google Scholar 

  73. •• Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol. 2011;58:1989–97. Multicenter study demonstrating the relationship between FFR determined from CCTA to invasive FFR.

    Article  PubMed  Google Scholar 

  74. •• Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA. 2012;308:1237–45. Multicenter study demonstrating the relationship between FFR determined from CCTA to invasive FFR.

    PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

Rine Nakanishi declares that she has no conflict of interest.

James K. Min declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James K. Min.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakanishi, R., Min, J.K. Coronary CT Angiographic Measures of Adverse Atherosclerotic Plaque Features. Curr Cardiovasc Risk Rep 7, 117–125 (2013). https://doi.org/10.1007/s12170-013-0299-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12170-013-0299-8

Keywords

Navigation