Skip to main content
Log in

Nonenzymatic Electrochemical Determination of Paraoxon Ethyl in Water and Fruits by Graphene-Based NiFe Bimetallic Phosphosulfide Nanocomposite as a Superior Sensing Layer

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

A highly sensitive nonenzymatic electrochemical sensor is designed for stripping voltammetric determination of paraoxon ethyl (PE) as a model for nitroaromatic organophosphates (OPs). Graphene-based NiFe bimetallic phosphosulfide nanocomposite is used for the first time as a novel electrocatalytic modifier for enhancing the electrochemical signal of PE. As a consequence of the efficient π-π stacking interactions between the aromatic structure of OPs and graphene and also due to the strong electrocatalytic properties of the bimetallic phosphosulfide, PE can strongly bind to the surface of modified glassy carbon electrodes and provide a dramatically enhanced voltammetric signal in a nonenzymatic determination method. Maximum square wave voltammetric (SWV) signals were obtained when the adsorption step was completed via 5-min convection at 1000 rpm in an analyte solution with the adjusted pH of 6. The SWV signal of PE was highly linear over the range of 12.3–10,000 nmol L−1 and with the detection limit of 3.7 nmol L−1 (S/N = 3). The developed sensor shows good reproducibility (RSD = 5.2%, N = 10). The study offers a promising application for bimetallic phosphosulfide compounds for developing fast, simple, and highly sensitive nonenzymatic determination protocol for nitroaromatic OPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akbarzade S, Chamsaz M, Rounaghi GH, Ghorbani M (2018) Zero-valent Fe-reduced graphene oxide quantum dots as a novel magnetic dispersive solid phase microextraction sorbent for extraction of organophosphorus pesticides in real water and fruit juice samples prior to analysis by gas chromatography-mass spectrometry. Anal Bioanal Chem 410:429–439. https://doi.org/10.1007/s00216-017-0732-9

    Article  CAS  PubMed  Google Scholar 

  • Arduini F, Forchielli M, Amine A, Neagu D, Cacciotti I, Nanni F, Moscone D, Palleschi G (2015) Screen-printed biosensor modified with carbon black nanoparticles for the determination of paraoxon based on the inhibition of butyrylcholinesterase. Microchim Acta 182:643–651

    Article  CAS  Google Scholar 

  • Asfaram A, Ghaedi M, Agarwal S, Tyagi I, Gupta VK (2015) Removal of basic dye Auramine-O by ZnS: Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface methodology with central composite design. RSC Adv 5:18438–18450

    Article  CAS  Google Scholar 

  • Bagheri H, Afkhami A, Khoshsafar H, Hajian A, Shahriyari A (2017) Protein capped Cu nanoclusters-SWCNT nanocomposite as a novel candidate of high-performance platform for organophosphates enzymeless biosensor. Biosens Bioelectron 89:829–836

    Article  CAS  PubMed  Google Scholar 

  • Cabán-Acevedo M, Stone ML, Schmidt JR, Thomas JG, Ding Q, Chang HC, Tsai ML, He JH, Jin S (2015) Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat Mater 14:1245–1251

    Article  CAS  PubMed  Google Scholar 

  • Dhara K, Mahapatra DR (2017) Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Microchim Acta 185:49. https://doi.org/10.1007/s00604-017-2609-1

    Article  CAS  Google Scholar 

  • Du D, Ye X, Zhang J, Zeng Y, Tu H, Zhang A, Liu D (2008) Stripping voltammetric analysis of organophosphate pesticides based on solid-phase extraction at zirconia nanoparticles modified electrode. Electrochem Commun 10:686–690. https://doi.org/10.1016/j.elecom.2008.02.019

    Article  CAS  Google Scholar 

  • Fang Z, Qiu X, Chen J, Qiu X (2011) Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: influencing factors, kinetics, and mechanism. J Hazard Mater 185:958–969

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara N, S-i Y, Siroma Z, Ioroi T, Senoh H, Yasuda K (2009) Nonenzymatic glucose fuel cells with an anion exchange membrane as an electrolyte. Electrochem Commun 11:390–392

    Article  CAS  Google Scholar 

  • Gong J, Wang L, Song D, Zhu X, Zhang L (2009) Stripping voltammetric analysis of organophosphate pesticides using Ni/Al layered double hydroxides as solid-phase extraction. Biosens Bioelectron 25:493–496. https://doi.org/10.1016/j.bios.2009.07.008

    Article  CAS  PubMed  Google Scholar 

  • Gupta VK, Ganjali M, Norouzi P, Khani H, Nayak A, Agarwal S (2011a) Electrochemical analysis of some toxic metals by ion–selective electrodes. Crit Rev Anal Chem 41:282–313

    Article  CAS  PubMed  Google Scholar 

  • Gupta VK, Nayak A, Agarwal S, Singhal B (2011b) Recent advances on potentiometric membrane sensors for pharmaceutical analysis. Comb Chem High Throughput Screen 14:284–302

    Article  CAS  PubMed  Google Scholar 

  • Gupta VK, Kumar S, Singh R, Singh L, Shoora S, Sethi B (2014) Cadmium (II) ion sensing through p-tert-butyl calix [6] arene based potentiometric sensor. J Mol Liq 195:65–68

    Article  CAS  Google Scholar 

  • Gupta VK, Karimi-Maleh H, Sadegh R (2015) Simultaneous determination of hydroxylamine, phenol and sulfite in water and wastewater samples using a voltammetric nanosensor. Int J Electrochem Sci 10:303–316

    Google Scholar 

  • Gusmão R, Sofer Z, Sedmidubský D, Stpn H, Pumera M (2017) The role of the metal element in layered metal phosphorus triselenides upon their electrochemical sensing and energy applications. ACS Catal 7:8159–8170

    Article  CAS  Google Scholar 

  • Hryniewicz BM, Orth ES, Vidotti M (2018) Enzymeless PEDOT-based electrochemical sensor for the detection of nitrophenols and organophosphates. Sensors Actuators B Chem 257:570–578. https://doi.org/10.1016/j.snb.2017.10.162

    Article  CAS  Google Scholar 

  • Huang Z, Lv C, Chen Z, Chen Z, Tian F, Zhang C (2015) One-pot synthesis of diiron phosphide/nitrogen-doped graphene nanocomposite for effective hydrogen generation. Nano Energy 12:666–674

    Article  CAS  Google Scholar 

  • Jiang T, Yan L, Meng Y, Xiao M, Wu Z, Tsiakaras P, Song S (2015) Glucose electrooxidation in alkaline medium: performance enhancement of PdAu/C synthesized by NH3 modified pulse microwave-assisted polyol method. Appl Catal B Environ 162:275–281

    Article  CAS  Google Scholar 

  • Karimi-Maleh H, Tahernejad-Javazmi F, Atar N, Yola ML, Gupta VK, Ensafi AA (2015) A novel DNA biosensor based on a pencil graphite electrode modified with polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-mercaptopurine anticancer drug. Ind Eng Chem Res 54:3634–3639

    Article  CAS  Google Scholar 

  • Karthik R, Vinoth Kumar J, Chen S-M, Kokulnathan T, Yang H-Y, Muthuraj V (2018) Design of novel ytterbium molybdate nano-flakes anchored carbon nanofibers: a challenging sustainable catalyst for the detection and degradation of assassination weapon (paraoxon-ethyl). ACS Sustain Chem Eng 6:8615–8630. https://doi.org/10.1021/acssuschemeng.8b00936

    Article  CAS  Google Scholar 

  • Kaur N, Prabhakar N (2017) Current scenario in organophosphates detection using electrochemical biosensors. TrAC Trends Anal Chem 92:62–85. https://doi.org/10.1016/j.trac.2017.04.012

    Article  CAS  Google Scholar 

  • Khairy M, Ayoub HA, Banks CE (2018) Non-enzymatic electrochemical platform for parathion pesticide sensing based on nanometer-sized nickel oxide modified screen-printed electrodes. Food Chem 255:104–111. https://doi.org/10.1016/j.foodchem.2018.02.004

    Article  CAS  PubMed  Google Scholar 

  • Li C, Wang C, Wang C, Hu S (2006) Development of a parathion sensor based on molecularly imprinted nano-TiO2 self-assembled film electrode. Sensors Actuators B Chem 117:166–171. https://doi.org/10.1016/j.snb.2005.11.019

    Article  CAS  Google Scholar 

  • Li H, Li J, Chen D, Qiu Y, Wang W (2015) Dual-functional cubic cuprous oxide for non-enzymatic and oxygen-sensitive photoelectrochemical sensing of glucose. Sensors Actuators B Chem 220:441–447. https://doi.org/10.1016/j.snb.2015.05.110

    Article  CAS  Google Scholar 

  • Li D, Jiang M, Xu L, Qiao X, Xu Z (2017) Simultaneous determination of acephate and isocarbophos in vegetables by capillary electrophoresis using ionic liquid and sodium dodecyl sulfate as modifiers. Food Anal Methods 10:3368–3374. https://doi.org/10.1007/s12161-017-0897-z

    Article  CAS  Google Scholar 

  • Lin Y, Zhang R (1994) Liquid chromatography series dual-electrode amperometric detection for aromatic nitro compounds. Electroanalysis 6:1126–1131

    Article  CAS  Google Scholar 

  • Liu G, Lin Y (2005) Electrochemical stripping analysis of organophosphate pesticides and nerve agents. Electrochem Commun 7:339–343

    Article  CAS  Google Scholar 

  • Liu D, Chen T, Zhu W, Cui L, Asiri AM, Lu Q, Sun X (2016) Cobalt phosphide nanowires: an efficient electrocatalyst for enzymeless hydrogen peroxide detection. Nanotechnology 27:33LT01

    Article  PubMed  Google Scholar 

  • Liu P, Zhang M, Xie S, Wang S, Cheng W, Cheng F (2017) Non-enzymatic glucose biosensor based on palladium-copper oxide nanocomposites synthesized via galvanic replacement reaction. Sensors Actuators B Chem 253:552–558. https://doi.org/10.1016/j.snb.2017.07.010

    Article  CAS  Google Scholar 

  • Musameh MM, Gao Y, Hickey M, Kyratzis IL (2012) Application of carbon nanotubes in the extraction and electrochemical detection of organophosphate pesticides: a review. Anal Lett 45:783–803. https://doi.org/10.1080/00032719.2012.655678

    Article  CAS  Google Scholar 

  • Oldham KB (1979) Analytical expressions for the reversible Randles-Sevcik function. J Electroanal Chem Interfacial Electrochem 105:373–375. https://doi.org/10.1016/S0022-0728(79)80132-1

    Article  CAS  Google Scholar 

  • Pan Y, Chen Y, Lin Y, Cui P, Sun K, Liu Y, Liu C (2016) Cobalt nickel phosphide nanoparticles decorated carbon nanotubes as advanced hybrid catalysts for hydrogen evolution. J Mater Chem A 4:14675–14686

    Article  CAS  Google Scholar 

  • Qi P, Wang J, Wang Z, Wang X, Wang X, Xu X, Xu H, di S, Zhang H, Wang Q, Wang X (2018) Construction of a probe-immobilized molecularly imprinted electrochemical sensor with dual signal amplification of thiol graphene and gold nanoparticles for selective detection of tebuconazole in vegetable and fruit samples. Electrochim Acta 274:406–414. https://doi.org/10.1016/j.electacta.2018.04.128

    Article  CAS  Google Scholar 

  • Rahmani T, Hajian A, Afkhami A, Bagheri H (2018) A novel and high performance enzyme-less sensing layer for electrochemical detection of methyl parathion based on BSA templated Au–Ag bimetallic nanoclusters. New J Chem 42:7213–7222

    Article  CAS  Google Scholar 

  • Ramnani P, Saucedo NM, Mulchandani A (2016) Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants. Chemosphere 143:85–98. https://doi.org/10.1016/j.chemosphere.2015.04.063

    Article  CAS  PubMed  Google Scholar 

  • Sgobbi LF, Machado SA (2018) Functionalized polyacrylamide as an acetylcholinesterase-inspired biomimetic device for electrochemical sensing of organophosphorus pesticides. Biosens Bioelectron 100:290–297

    Article  CAS  PubMed  Google Scholar 

  • Song D, Wang Y, Lu X, Gao Y, Li Y, Gao F (2018) Ag nanoparticles-decorated nitrogen-fluorine co-doped monolayer MoS2 nanosheet for highly sensitive electrochemical sensing of organophosphorus pesticides. Sensors Actuators B Chem 267:5–13. https://doi.org/10.1016/j.snb.2018.04.016

    Article  CAS  Google Scholar 

  • Stoytcheva M, Zlatev R, Montero G, Velkova Z, Gochev V (2017) Nanostructured platform for the sensitive determination of paraoxon by using an electrode modified with a film of graphite-immobilized bismuth. Microchim Acta 184:2707–2714

    Article  CAS  Google Scholar 

  • Talebianpoor MS, Khodadoust S, Mousavi A, Mahmoudi R, Nikbakht J, Mohammadi J (2017) Preconcentration of carbamate insecticides in water samples by using modified stir bar with ZnS nanoparticles loaded on activated carbon and their HPLC determination: response surface methodology. Microchem J 130:64–70. https://doi.org/10.1016/j.microc.2016.08.002

    Article  CAS  Google Scholar 

  • Tankiewicz M, Biziuk M (2018) Fast, sensitive and reliable multi-residue method for routine determination of 34 pesticides from various chemical groups in water samples by using dispersive liquid–liquid microextraction coupled with gas chromatography-mass spectrometry. Anal Bioanal Chem 410:1533–1550

    Article  CAS  PubMed  Google Scholar 

  • Tian X, Liu L, Li Y, Yang C, Zhou Z, Nie Y, Wang Y (2018) Nonenzymatic electrochemical sensor based on CuO-TiO2 for sensitive and selective detection of methyl parathion pesticide in groundwater. Sensors Actuators B Chem 256:135–142. https://doi.org/10.1016/j.snb.2017.10.066

    Article  CAS  Google Scholar 

  • Tunesi MM, Kalwar N, Abbas MW, Karakus S, Soomro RA, Kilislioglu A, Abro MI, Hallam KR (2018) Functionalised CuO nanostructures for the detection of organophosphorus pesticides: a non-enzymatic inhibition approach coupled with nano-scale electrode engineering to improve electrode sensitivity. Sensors Actuators B Chem 260:480–489. https://doi.org/10.1016/j.snb.2018.01.084

    Article  CAS  Google Scholar 

  • Uniyal S, Sharma RK (2018) Technological advancement in electrochemical biosensor based detection of organophosphate pesticide chlorpyrifos in the environment: a review of status and prospects. Biosens Bioelectron 116:37–50. https://doi.org/10.1016/j.bios.2018.05.039

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chatrathi MP, Mulchandani A, Chen W (2001) Capillary electrophoresis microchips for separation and detection of organophosphate nerve agents. Anal Chem 73:1804–1808

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Ma Z, Li J, Zhang Z, Tang B, Wang X (2018) Well-dispersed palladium nanoparticles on nickel- phosphorus nanosheets as efficient three-dimensional platform for superior catalytic glucose electro-oxidation and non-enzymatic sensing. J Colloid Interface Sci 511:355–364. https://doi.org/10.1016/j.jcis.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  • Xin Y, Kan X, Gan L-Y, Zhang Z (2017) Heterogeneous bimetallic phosphide/sulfide nanocomposite for efficient solar-energy-driven overall water splitting. ACS Nano 11:10303–10312

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Tu H, Zhang A, Du D, Lin Y (2012) Preparation and characterization of Au–ZrO2–SiO2 nanocomposite spheres and their application in enrichment and detection of organophosphorus agents. J Mater Chem 22:4977–4981

    Article  CAS  Google Scholar 

  • Yola ML, Gupta VK, Eren T, Şen AE, Atar N (2014) A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim Acta 120:204–211

    Article  CAS  Google Scholar 

  • Yu X-Y, Feng Y, Guan B, Lou XWD, Paik U (2016) Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy Environ Sci 9:1246–1250

    Article  CAS  Google Scholar 

  • Zhang S, Liu X, Qin J’, Yang M, Zhao H, Wang Y, Guo W, Ma Z, Kong W (2017) Rapid gas chromatography with flame photometric detection of multiple organophosphorus pesticides in Salvia miltiorrhizae after ultrasonication assisted one-step extraction. J Chromatogr B 1068-1069:233–238. https://doi.org/10.1016/j.jchromb.2017.10.025

    Article  CAS  Google Scholar 

  • Zhao Y, Zhang W, Lin Y, Du D (2013) The vital function of Fe3O4@Au nanocomposites for hydrolase biosensor design and its application in detection of methyl parathion. Nanoscale 5:1121–1126. https://doi.org/10.1039/C2NR33107A

    Article  CAS  PubMed  Google Scholar 

  • Zhao F, Wu J, Ying Y, She Y, Wang J, Ping J (2018) Carbon nanomaterial-enabled pesticide biosensors: design strategy, biosensing mechanism, and practical application. TrAC Trends Anal Chem 106:62–83. https://doi.org/10.1016/j.trac.2018.06.017

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of this work by the Research Council of Baqiyatallah University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Bagheri.

Ethics declarations

Conflict of Interest

Ali Aghaei declares that he has no conflict of interest. Akbar Khanmohammadi declares that he has no conflict of interest. Ali Hajian declares that he has no conflict of interest. Ulrich Schmid declares that he has no conflict of interest. Hasan Bagheri declares that he has no conflict of interest.

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

For this type of study, informed consent is not required.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghaie, A., Khanmohammadi, A., Hajian, A. et al. Nonenzymatic Electrochemical Determination of Paraoxon Ethyl in Water and Fruits by Graphene-Based NiFe Bimetallic Phosphosulfide Nanocomposite as a Superior Sensing Layer. Food Anal. Methods 12, 1545–1555 (2019). https://doi.org/10.1007/s12161-019-01486-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-019-01486-8

Keywords

Navigation