Skip to main content
Log in

SWCNT-modified carbon paste electrode as an electrochemical sensor for histamine determination in alcoholic beverages

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

In this work, a simple and rapid electrochemical method is presented for the voltammetric determination of histamine based on carbon paste electrodes bulk-modified with single-walled carbon nanotubes. As monitored in cyclic voltammetry histamine undergoes an irreversible electrochemical oxidation with a peak potential of ca. +1.25 V (vs. Ag/AgCl, 3 mol L−1 KCl) in phosphate buffer solution (PBS, 0.1 mol L−1, pH 6.0). At optimized differential pulse voltammetric parameters, the current response of histamine was linearly proportional to its concentration in the range from 4.5 to 720 μmol L−1. A low limit of detection of 1.26 μmol L−1 and a limit of quantification of 3.78 μmol L−1 of histamine, as well as good reproducibility (RSD = 0.48–3.40 %) were obtained using the carbon paste electrode modified with single-walled carbon nanotubes. The proposed sensor was successfully applied to the determination of histamine in commercial beer and wine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antiochia R, Lavagnini I, Magno F, Valentini F, Palleschi G (2004) Single-wall carbon nanotube paste electrodes: a comparison with carbon paste, platinum and glassy carbon electrodes via cyclic voltammetric data. Electroanalysis 16:1451–1458

    Article  CAS  Google Scholar 

  • Antoine FR, Wei C, Steve Otwell W, Sims CA, Littell RC, Hogle AD, Marshall MR (2002) Gas chromatography analysis of histamine in mahi-mahi. J Agric Food Chem 50:4754–4759

    Article  CAS  Google Scholar 

  • AOAC (2002) Official method of analysis of AOAC International, 17th edn. AOAC International, Maryland

    Google Scholar 

  • Bao L, Sun D, Tachikawa H, Davidson VL (2002) Improved sensitivity of a histamine sensor using an engineered methylamine dehydrogenase. Anal Chem 74:1144–1148

    Article  CAS  Google Scholar 

  • Bauza T, Blaise A, Daumas F, Cabanis J (1995) Determination of biogenic amines and their precursor amino acids in wines of the Vallée du Rhone by high-performance liquid chromatography with precolumn derivatization and fluorimetric detection. J Chromatogr A 707:373–379

    Article  CAS  Google Scholar 

  • Degefu H, Amare M, Tessema M, Admassie S (2014) Lignin modified glassy carbon electrode for the electrochemical determination of histamine in human urine and wine samples. Electrochim Acta 121:307–314

    Article  CAS  Google Scholar 

  • Fernandes JO, Judas IC, Oliveira MB, Ferreira IMPLVO, Ferreira MA (2001) A GC-MS method for quantitation of histamine and other biogenic amines in beer. Chromatographia 53:S327–S331

    Article  Google Scholar 

  • Geto A, Tessema M, Admassie S (2014) Determination of histamine in fish muscle at multi-walled carbon nanotubes coated conducting polymer modified glassy carbon electrode. Synth Met 191:135–140

    Article  CAS  Google Scholar 

  • Hwang B-S, Wang J-T, Choong Y-M (2003) A rapid gas chromatographic method for the determination of histamine in fish and fish products. Food Chem 82:329–334

    Article  CAS  Google Scholar 

  • ICH-Q2B (1996) Validation of analytical procedures: methodology Q2 (R1). International Conference on Harmonisation. Validation of Analytical Procedures: Text and Methodology, ICH, Geneva, Switzerland. http://www.gmp-compliance.org/guidemgr/files/Q2(R1).PDF (1.9.2015)

  • Jensen TB, Marley PD (1995) Development of an assay for histamine using automated high-performance liquid chromatography with electrochemical detection. J Chromatogr B 670:199–207

    Article  CAS  Google Scholar 

  • Jutel M, Watanabe T, Akdis M, Blaser K, Akdis CA (2002) Immune regulation by histamine. Curr Opin Immunol 14:735–740

    Article  CAS  Google Scholar 

  • Kalcher K (1990) Chemically modified carbon paste electrodes in voltammetric analysis. Electroanalysis 2:419–433

    Article  CAS  Google Scholar 

  • Karimi-Maleh H, Biparva P, Hatami M (2013) A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid. Biosens Bioelectron 48:270–275

    Article  CAS  Google Scholar 

  • Karimi-Maleh H, Tahernejad-Javazmi F, Ensafi AA, Moradi R, Mallakpour S, Beitollahi A (2014) A high sensitive biosensor based on FePt/CNTs nanocomposite/N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens Bioelectron 60:1–7

    Article  CAS  Google Scholar 

  • Karimi-Maleh H, Tahernejad-Javazmi F, Atar N, Yola ML, Gupta VK, Ensafi AA (2015) A novel DNA biosensor based on a pencil graphite electrode modified with polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-mercaptopurine anticancer drug. Ind Eng Chem Res 54:3634–3639

    Article  CAS  Google Scholar 

  • Keow CM, Bakar FA, Salleh AB, Heng LY, Wagiran R, Bean LS (2007) An amperometric biosensor for the rapid assessment of histamine level in tiger prawn (Penaeus monodon) spoilage. Food Chem 105:1636–1641

    Article  CAS  Google Scholar 

  • Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  • Lehane L, Olley J (2000) Histamine fish poisoning revisited. Int J Food Microbiol 58:1–37

    Article  CAS  Google Scholar 

  • Libo N, Huishi G, Quanguo H, Jianrong C, Yuqing M (2007) Enhanced electrochemical detection of DNA hybridization with carbon nanotube modified paste electrode. J Nanosci Nanotechnol 7:560–564

    Article  Google Scholar 

  • Lieber ER, Taylor SL (1978) Thin-layer chromatographic screening methods for histamine in tuna fish. J Chromatogr A 153:143–152

    Article  CAS  Google Scholar 

  • Lonvaud-Funel A (2001) Biogenic amines in wines: role of lactic acid bacteria. FEMS Microbiol Lett 199:9–13

    Article  CAS  Google Scholar 

  • Maintz L, Novak N (2007) Histamine and histamine intolerance. Am J Clin Nutr 85:1185–1196

    CAS  Google Scholar 

  • Male KB, Bouvrette P, Luong JHT, Gibbs B (1996) Amperometric biosensor for total histamine, putrescine and cadaverine using diamine oxidase. J Food Sci 61:1012–1016

    Article  CAS  Google Scholar 

  • Najafi M, Khalilzadeh MA, Karimi-Maleh H (2014) A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem 158:125–131

    Article  CAS  Google Scholar 

  • Niculescu M, Frébort I, Peč P, Galuszka P, Mattiasson B, Csöregi E (2000) Amine oxidase based amperometric biosensors for histamine detection. Electroanalysis 12:369–375

    Article  CAS  Google Scholar 

  • Önal A (2007) A review: current analytical methods for the determination of biogenic amines in foods. Food Chem 103:1475–1486

    Article  Google Scholar 

  • Patange SB, Mukundan MK, Ashok Kumar K (2005) A simple and rapid method for colorimetric determination of histamine in fish flesh. Food Control 16:465–472

    Article  CAS  Google Scholar 

  • Proestos C, Loukatos P, Komaitis M (2008) Determination of biogenic amines in wines by HPLC with precolumn dansylation and fluorimetric detection. Food Chem 106:1218–1224

    Article  CAS  Google Scholar 

  • Rauscher-Gabernig E, Grossgut R, Bauer F, Paulsen P (2009) Assessment of alimentary histamine exposure of consumers in Austria and development of tolerable levels in typical foods. Food Control 20:423–429

    Article  CAS  Google Scholar 

  • Rivas GA, Rubianes MD, Pedano ML, Ferreyra NF, Luque GL, Rodríguez MC, Miscoria SA (2007) Carbon nanotubes paste electrodes. A new alternative for the development of electrochemical sensors. Electroanalysis 19:823–831

  • Russell FE, Maretić Z (1986) Scombroid poisoning: mini-review with case histories. Toxicon 24:967–973

  • Saleh Ahammad AJ, Lee J-J, Aminur Rahman M (2009) Electrochemical sensors based on carbon nanotubes. Sensors 9:2289–2319

    Article  CAS  Google Scholar 

  • Sarada BV, Rao TN, Tryk DA, Fujishima A (2000) Electrochemical oxidation of histamine and serotonin at highly boron-doped diamond electrodes. Anal Chem 72:1632–1638

    Article  CAS  Google Scholar 

  • Stojanović Z, Švarc-Gajić J (2011) A simple and rapid method for histamine determination in fermented sausages by mediated chronopotentiometry. Food Control 22:2013–2019

    Article  Google Scholar 

  • Švancara I, Kalcher K, Walcarius A, Vytras K (2012) Electroanalysis with carbon paste electrodes. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Švarc-Gajić J, Stojanović Z (2010) Electrocatalytic determination of histamine on a nickel-film glassy carbon electrode. Electroanalysis 22:2931–2939

    Article  Google Scholar 

  • Švarc-Gajić J, Stojanović Z (2011) Determination of histamine in cheese by chronopotentiometry on a thin film mercury electrode. Food Chem 124:1172–1176

    Article  Google Scholar 

  • Tao Z, Sato M, Han Y, Tan Z, Yamaguchi T, Nakano T (2011) A simple and rapid method for histamine determination by TLC determination. Food Control 22:1154–2257

    Article  CAS  Google Scholar 

  • Taylor SL (1986) Histamine poisoning: toxicology and clinical aspects. Crit Rev Toxicol 17:91–128

    Article  CAS  Google Scholar 

  • Trojanowicz M (2006) Analytical applications of carbon nanotubes: a review. Trends Anal Chem 25:480–489

    Article  CAS  Google Scholar 

  • Valentini F, Amine A, Orlanducci S, Terranova ML, Palleschi G (2003) Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes. Anal Chem 75:5413–5421

    Article  CAS  Google Scholar 

  • Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7–14

    Article  CAS  Google Scholar 

  • Wang Z, Liu J, Liang Q, Wang Y, Luo G (2002) Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid. Analyst 127:653–658

    Article  CAS  Google Scholar 

  • Yamamoto K, Takagi K, Kano K, Ikeda T (2001) Bioelectrocatalytic detection of histamine using quinohemoprotein amine dehydrogenase and the native electron acceptor cytochrome c-550. Electroanalysis 13:375–379

    Article  CAS  Google Scholar 

  • Yilmaz UT, Inan D (2015) Quantification of histamine in various fish samples using square wave stripping voltammetric method. J Food Sci Technol 52:6671–6678

    Article  CAS  Google Scholar 

  • Zeng K, Tachikawa H, Zhu Z, Davidson VL (2000) Amperometric detection of histamine with a methylamine dehydrogenase polypyrrole-based sensor. Anal Chem 72:2211–2215

    Article  CAS  Google Scholar 

  • Zhang L-Y, Sun M-X (2004) Determination of histamine and histidine by capillary zone electrophoresis with pre-column naphthalene-2,3-dicarboxaldehyde derivatization and fluorescence detection. J Chromatogr A 1040:133–140

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CEEPUS (Central European Exchange Program for University Studies) project CZ 0212. We have no financial relationship with the organization that sponsored the research. Z. S. acknowledges financial support from the Coimbra Group Universities through scholarship for short research stay at the Karl-Franzens University in Graz. E.M. acknowledges a scholarship from Higher KOS Stipendien, financed by ADA and MEST and the Austrian Agency for International Cooperation in Education and Research (OeAD-GmbH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zorica S. Stojanović.

Ethics declarations

Conflict of Interest

Zorica S. Stojanović declares that she has no conflict of interest. Eda Mehmeti declares that she has no conflict of interest. Kurt Kalcher declares that he has no conflict of interest. Valéria Guzsvány declares that she has no conflict of interest. Dalibor M. Stanković declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human or animal subjects. This is an original research article that has neither been published previously nor considered presently for publication elsewhere. All authors named in the manuscript are entitled to the authorship and have approved the final version of the submitted manuscript.

Informed Consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stojanović, Z.S., Mehmeti, E., Kalcher, K. et al. SWCNT-modified carbon paste electrode as an electrochemical sensor for histamine determination in alcoholic beverages. Food Anal. Methods 9, 2701–2710 (2016). https://doi.org/10.1007/s12161-016-0452-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-016-0452-3

Keywords

Navigation