Skip to main content
Log in

Electrochemical Determination of Vitamin B-12 in Food Samples by Poly(2,2′-(1,4-phenylenedivinylene) Bis-8 hydroxyquinaldine)/Multi-Walled Carbon Nanotube-Modified Glassy Carbon Electrode

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Poly(2,2′-(1,4-phenylenedivinylene) bis-8-hydroxyquinaldine)/multi-walled carbon nanotube-modified glassy carbon electrode (poly(PBHQ)/MWCNTs/GCE) was developed and applied for the electrochemical estimation of vitamin B-12 (VB-12). Compared to multi-walled carbon nanotube-modified glassy carbon electrode, well-defined redox peaks were observed in phosphate buffer solution at pH 2.5. In contrast with the ill-defined redox peaks observed with unmodified glassy carbon electrode surfaces. The poly(2,2′-(1,4-phenylenedivinylene) bis-8-hydroxyquinaldine-based electrode displayed a good linear range of 0.1 to 10 μM VB-12 with a low detection limit of 0.01 μM. To further study the practical applicability of the proposed sensing procedure, the estimation of real samples was employed with satisfactory consequences. In addition, MWCNTs were used as sorbent for solid phase extraction (SPE) of vitamin B-12 from cereal food samples. Solid phase extraction parameters, such as the amount of MWCNTs, sample volume, pH, and type and amount of the eluent, were optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Diakoumakos C D, Mikroyannidis J A (1993) Polyesters, polyurethanes and epoxy resins derived from 2,2'-(1,4–phenylenedivinylene)b is-8-hydroxyquinaldine and 6-(4 hydroxystyryl)-3-hydroxypyridine. J Polym Sci Part A: Polym Chem 2333–2344.

  • Filik H, Avan AA, Aydar S (2015a) Simultaneous electrochemical determination of α-tocopherol and retinol in micellar media by a poly(2,2'-(1,4 phenylenedivinylene)-bis-8-hydroxyquinaldine)-multiwalled carbon nanotube modified electrode. Anal Lett In press, DOI:10.1080/00032719.2015.1094665.

  • Filik H, Aydar S, Avan AA (2015b) Poly(2,2’-(1,4-phenylenedivinylene)bis-8-hydroxyquinaldine) modified glassy carbon electrode for the simultaneous determination of paracetamol and p-aminophenol. Anal Lett 16:2581–2596

  • Gao Y, Guo F, Gokavi S, Chow A, Sheng Q, Guo M (2008) Quantification of water soluble vitamins in milk based infant formulae using biosensor-based assays. Food Chem 110:769–776

    Article  CAS  Google Scholar 

  • Giroussi ST, Voulgaropoulus AN, Golimowski J (1997) Voltammetric determination of vitamin B12 (as cobalt) after UV digestion. Chem Anal (Warsaw) 42:589–593

    CAS  Google Scholar 

  • Herbert V (1996) Vitamin B12. In: Ziegler EE, Filer LJ (eds) Present knowledge in nutrition, 7th edn. ILSI Press, Washington, DC, pp 191–205

    Google Scholar 

  • Herbert V, Das K (1994) Vitamin B12 in modern nutrition in health and disease. Williams & Wilkins, Baltimore

    Google Scholar 

  • Hernández SR, Ribero GG, Goicoechea HC (2003) Enhanced application of square wave voltammetry with glassy carbon electrode coupled to multivariate calibration tools for the determination of B6 and B12 vitamins in pharmaceutical preparations. Talanta 61:743–753

    Article  Google Scholar 

  • Heudi O, Kilinc T, Fontannaz P, Marley E (2006) Determination of Vitamin B12 in food products and in premixes by reversed-phase high performance liquid chromatography and immunoaffinity extraction. J Chromatogr A 1101:63–68

    Article  CAS  Google Scholar 

  • Kalvoda R (1990) Electrochemical analysis for environmental control. Electroanalysis 2:341–346

    Article  CAS  Google Scholar 

  • Kreft GL, de Braga OC, Spinelli A (2012) Analytical electrochemistry of vitamin B12 on a bismuth-film electrode surface. Electrochim Acta 83:125–132

    Article  CAS  Google Scholar 

  • Kumar SS, Chouhan RS, Thakur MS (2010) Trends in analysis of vitamin B12. Anal Biochem 398:139–149

    Article  CAS  Google Scholar 

  • Kuralay F, Vural T, Bayram C, Denkbaş EB, Abaci S (2011) Carbon nanotube-chitosan modified disposable pencil graphite electrode for vitamin B12 analysis. Colloids Surf B 87:18–22

    Article  CAS  Google Scholar 

  • Lexa D, Savéant JM (1976) Electrochemistry of vitamin B12. I. Role of the base-on/base-off reaction in the oxidoreduction mechanism of the B12r-B12s system. J Am Chem Soc 98:2652–2658

    Article  CAS  Google Scholar 

  • Lexa D, Savéant JM (1983) The electrochemistry of vitamin B12. Acc Chem Res 16:235–243

    Article  CAS  Google Scholar 

  • Lexa D, Savéant JM, Zickler J (1980) Electrochemistry of vitamin B12. 5. Cyanocobalamins. J Am Chem Soc 102:2654–2663

    Article  CAS  Google Scholar 

  • Li HB, Chen F, Jiang Y (2000) Determination of vitamin B-12 in multivitamin tablets and fermentation medium by high-performance liquid chromatography with fluorescence detection. J Chromatogr A 891:243–247

    Article  CAS  Google Scholar 

  • Lin MS, Leu HJ, Lai CH (2006) Development of vitamin B12 based disposable sensor for dissolved oxygen. Anal Chim Acta 561:164–170

    Article  CAS  Google Scholar 

  • Manisankar P, Viswanathan S, Prabu HG (2004) Determination of direct orange 8 in effluent using a polypyrrole modified electrode. Int J Environ Anal Chem 84:389–397

    Article  CAS  Google Scholar 

  • Manisankar P, Viswanathan S, Pusphalatha AM, Rani C (2005) Electrochemical studies and square wave stripping voltammetry of five common pesticides on poly 3,4-ethylenedioxythiophene modified wall-jet electrode. Anal Chim Acta 528:157–163

    Article  CAS  Google Scholar 

  • Michopoulos A, Florou AB, Prodromidis MI (2015) Ultrasensitive determination of vitamin B12 using disposable graphite screen-printed electrodes and anodic adsorptive voltammetry. Electroanalysis 27:1876–1882

    Article  CAS  Google Scholar 

  • Ovalle M, Arroyo E, Stoytcheva M, Zlatev R, Enriquez L, Olivas A (2015) An amperometric microbial biosensor for the determination of vitamin B12. Anal Methods 7:8185–8189

    Article  CAS  Google Scholar 

  • Oxspring DA, Maxwell TJ, Smyth WF (1996) UV-visible spectrophotometric, adsorptive stripping voltammetric and capillary electrophoretic study of 2-(5′-bromo-2′-pyridylazo) -5-diethylaminophenol and its chelates with selected metal ions: application to the determination of Co(III) in vitamin B12. Anal Chim Acta 323:97–105

    Article  CAS  Google Scholar 

  • Pala BB, Vural T, Kuralay F, Çırak T, Bolat G, Abacı S, Denkbaş EB (2014) Disposable pencil graphite electrode modified with peptide nanotubes for vitamin B12 analysis. Appl Surf Sci 303:37–45

    Article  CAS  Google Scholar 

  • Refera T, Chandranvanshi BS, Alemu H (1998) Differential pulse anodic stripping voltammetric determination of cobalt(II) with N-p-chlorophenylcinnamohydroxamic acid modified carbon paste electrode. Elecroanalysis 10:1038–1042

    Article  CAS  Google Scholar 

  • Sawamoto H (1985) Cathodic adsorption stripping analysis of vitamin B12. J Electroanal Chem 195:395–404

    Article  CAS  Google Scholar 

  • Stabler SP (1999) B12 and nutrition. In: Banerjee R (ed) Chemistry and biochemistry of B12. Wiley, New York, pp 343–365

    Google Scholar 

  • Tomčik P, Banks CE, Davies TJ, Compton RG (2004) A self-catalytic carbon paste electrode for the detection of vitamin B12. Anal Chem 76:161–165

    Article  Google Scholar 

  • Xiang W, Li JY, Ma ZY (2007) Electrochemical behaviour and determination of vitamin B12 at multi-wall carbon nanotubes modified glassy carbon electrode. Chin J Appl Chem 24:921–924

    CAS  Google Scholar 

  • Yang N, Wan Q, Wang X (2005) Voltammetry of vitamin B12 on a thin self-assembled, monolayer modified electrode. Electrochim Acta 50:2175–2180

    Article  CAS  Google Scholar 

  • Zheng D, Lu T (1997) Electrochemical reactions of cyanocobalamin in acidic media. J Electroanal Chem 429:61–65

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Istanbul University Scientific Research Fund for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayati Filik.

Ethics declarations

Conflict of Interest

Asiye Aslıhan Avan and Sevda Aydar declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Human and/or animal were not used in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filik, H., Avan, A.A. & Aydar, S. Electrochemical Determination of Vitamin B-12 in Food Samples by Poly(2,2′-(1,4-phenylenedivinylene) Bis-8 hydroxyquinaldine)/Multi-Walled Carbon Nanotube-Modified Glassy Carbon Electrode. Food Anal. Methods 9, 2251–2260 (2016). https://doi.org/10.1007/s12161-016-0420-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-016-0420-y

Keywords

Navigation