Skip to main content
Log in

Review of Methods to Determine Antioxidant Capacities

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Antioxidant capacity is related with compounds capable of protecting a biological system against the potentially harmful effect of processes or reactions involving reactive oxygen and nitrogen species (ROS and RNS). These protective effects of antioxidants have received increasing attention within biological, medical, nutritional, and agrochemical fields and resulted in the requirement of simple, convenient, and reliable antioxidant capacity determination methods. Many methods which differ from each other in terms of reaction mechanisms, oxidant and target/probe species, reaction conditions, and expression of results have been developed and tested in the literature. In this review, the methods most widely used for the determination of antioxidant capacity are evaluated, presenting the general principals, recent applications, and their strengths and limitations. Analysis conditions, substrate, and antioxidant concentration should simulate real food or biological systems as much as possible when selecting the antioxidant capacity method. The total antioxidant capacity value should include methods applicable to both lipophilic and hydrophilic antioxidants, with regards the similarity and differences of both hydrogen atom transfer and electron transfer mechanism. The methods including various ROS/RNS also have to be designed to comprehensively evaluate the antioxidant capacity of a sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboul-Enein HY, Kladna A, Kruk I, Lichszteld K, Michalska T, Olgen S (2005) Scavenging of reactive oxygen species by novel indolin-2-one and indoline-2-thione derivatives. Biopolymers 78:171. doi:10.1002/bip.20268

    CAS  Google Scholar 

  • Adom KK, Liu RH (2005) Rapid peroxyl radical scavenging capacity (PSC) assay for assessing both hydrophilic and lipophilic antioxidants. J Agric Food Chem 53:6572. doi:10.1021/jf048318o

    CAS  Google Scholar 

  • Akoh CC, Min DB (1998) Food lipids; chemistry, nutrition and biotechnology, Part IV. Marcel Dekker, New York, pp 432–427

    Google Scholar 

  • Antolovich M, Prenzler PD, Patsalides E, McDonald S, Robards K (2002) Critical review: methods for testing antioxidant activity. The Analyst 127:183. doi:10.1039/b009171p

    CAS  Google Scholar 

  • Apak R, Guclu KG, Ozyurek M, Karademir SE (2004) Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric iron reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem 52:7970. doi:10.1021/jf048741x

    CAS  Google Scholar 

  • Apak R, Guclu K, Demirata B, Ozyurek M, Celik SE, Bektasoglu B et al (2007) Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 12:1496

    CAS  Google Scholar 

  • Apak R, Guclu K, Ozyurek M, Celik SE (2008) Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim Acta 160:413

    CAS  Google Scholar 

  • Arnao MB (2000) Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends Food Sci Technol 11:419. doi:10.1016/S0924-2244(01)00027-9

    CAS  Google Scholar 

  • Arts MJTJ, Haenen GRMM, Voss H, Bast A (2004) Antioxidant capacity of reaction products limits the applicability of the Trolox Equivalent Antioxidant Capacity (TEAC) assay. Food Chem Toxicol 42:45. doi:10.1016/j.fct.2003.08.004

    CAS  Google Scholar 

  • Aruoma OI, Murcia A, Butler J, Halliwell B (1993) Evaluation of the antioxidant and pro-oxidant actions of gallic acid and its derivatives. J Agric Food Chem 41:1880. doi:10.1021/jf00035a014

    CAS  Google Scholar 

  • Bastos EL, Romoff P, Eckert CR, Baader WJ (2003) Evaluation of antiradical capacity of H2O2-hemin induced luminol chemiluminescence. J Agric Food Chem 51:7481. doi:10.1021/jf0345189

    CAS  Google Scholar 

  • Benov L, Sztenjberg L, Fridovich I (1998) Critical Evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radic Biol Med 25(7):826. doi:10.1016/S0891-5849(98)00163-4

    CAS  Google Scholar 

  • Benzie IFF (2003) Evolution of dietary antioxidants. Comp Biochem Physiol Part A 136:113. doi:10.1016/S1095-6433(02)00368-9

    Google Scholar 

  • Benzie IFF, Chung WY, Strain JJ (1999) Antioxidant (reducing) efficiency of ascorbate in plasma is not affected by concentration. J Nutr Biochem 10:146. doi:10.1016/S0955-2863(98)00084-9

    CAS  Google Scholar 

  • Botchway SW, Crisostomo AG, Parker AW, Bisby RH (2007) Near infrared multiphoton-induced generation and detection of hydroxyl radicals in a biochemical system. Arch Biochem Biophys 464:314. doi:10.1016/j.abb.2007.04.026

    CAS  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28:25. doi:10.1016/S0023-6438(95)80008-5

    CAS  Google Scholar 

  • Caillet S, Yu H, Lessard S, Lamoureux G, Ajdukovic D, Lacroix M (2007) Fenton reaction applied for screening natural antioxidants. Food Chem 100(2):542. doi:10.1016/j.foodchem.2005.10.009

    CAS  Google Scholar 

  • Calliste CA, Trouillas P, Allais DP, Simon A, Duroux JL (2001) Free radical scavenging activities measured by electron spin resonance spectroscopy and B16 cell antiproliferative behaviours of seven plants. J Agric Food Chem 49:3321. doi:10.1021/jf010086v

    CAS  Google Scholar 

  • Cao G, Sofic E, Prior R (1997) Antioxidant and prooxidant behaviour of flavonoids: structure–activity relationships. Free Radic Biol Med 22(5):749. doi:10.1016/S0891-5849(96)00351-6

    CAS  Google Scholar 

  • Cao Y, Chu Q, Ye J (2003) Determination of hydroxyl radical by capillary electrophoresis and studies on hydroxyl radical scavenging activities of Chinese herbs. Anal Bioanal Chem 376:691. doi:10.1007/s00216-003-1961-7

    CAS  Google Scholar 

  • Cao QH, Zhou XZ, Cai RX, Zhi HL (2005) Fluorimetric determination of peroxynitrite based on an enzymatic reaction. Anal Sci 21:445

    CAS  Google Scholar 

  • Castro IA, Rogero MM, Junqueria RM, Carropeiro MM (2006) Free radical scavenger and antioxidant capacity correlation of α-tocopherol and Trolox measured by in vitro methodologies. Int J Food Sci Nutr 57(1-2):75. doi:10.1080/09637480600656199

    CAS  Google Scholar 

  • Chaudiere J, Ferrari-Iliou R (1999) Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol 37:949. doi:10.1016/S0278-6915(99)00090-3

    CAS  Google Scholar 

  • Chen C-W, Chiou J-F, Tsai C-H, Shu C-W, Lin M-H, Liu T-Z, Tsai L-Y (2006) Development of probe-based ultraweak chemiluminescence technique for the detection of a panel of four oxygen-derived free radicals and their applications in the assessment of radical-scavenging abilities of extracts and purified compounds from food and herbal preparations. J Agric Food Chem 54:9297. doi:10.1021/jf061779k

    CAS  Google Scholar 

  • Cheng Z, Yan G, Li Y, Chang W (2003) Determination of antioxidant activity of phenolic antioxidants in a Fenton-type reaction system by chemiluminescence assay. Anal Bioanal Chem 375:376

    CAS  Google Scholar 

  • Cheng Z, Zhou H, Yin J, Yu L (2007) Electron spin resonance estimation of hydroxyl radical scavenging capacity for lipophilic antioxidants. J Agric Food Chem 55:3325. doi:10.1021/jf0634808

    CAS  Google Scholar 

  • Chumark P, Khunawat P, Sanvarinda Y, Phornchirasilp S, Morales NP, Phivthong-ngam L et al (2008) The in vitro and ex-vivo antioxidant properties, hypolipidaemic and antiatherosclerotic activities of water extract of Moringa oleifera Lam. Leaves. J Ethnopharmacol 116:439. doi:10.1016/j.jep.2007.12.010

    Google Scholar 

  • De Beer D, Joubert E, Gelderblom WCA, Manley M (2003) Antioxidant activity of South African red and white cultivar wines: free radical scavenging. J Agric Food Chem 51:902. doi:10.1021/jf026011o

    Google Scholar 

  • Eberhardt MV, Kobira K, Keck AS, Juvik JA, Jeffery EH (2005) Correlation analyses of phytochemical composition, chemical, and cellular measures of antioxidant activity of broccoli (Brassica oleracea L. Var. italica). J Agric Food Chem 53:7421

    CAS  Google Scholar 

  • Frankel EN, Meyer AS (2000) The problems of using one dimensional methods to evaluate multifunctional food and biological antioxidants. J Sci Food Agric 80(13):1925. doi:10.1002/1097-0010(200010)80:13<1925::AID-JSFA714>3.0.CO;2-4

    CAS  Google Scholar 

  • Fukumoto LR, Mazza G (2000) Assessing antioxidant and prooxidant activities of phenolic compounds. J Agric Food Chem 48(8):3597. doi:10.1021/jf000220w

    CAS  Google Scholar 

  • Gheldof N, Engeseth NJ (2002) Antioxidant capacity of honeys from various floral sources based on the determination of oxygen radical absorbance capacity and inhibition of in vitro lipoprotein oxidation in human serum samples. J Agric Food Chem 50:3050. doi:10.1021/jf0114637

    CAS  Google Scholar 

  • Glebska J, Koppenol WH (2003) Peroxynitrite-mediated oxidation of dichlorodihydrofluorescein and dihydrorhodamine. Free Radic Biol Med 35(6):676. doi:10.1016/S0891-5849(03)00389-7

    CAS  Google Scholar 

  • Halliwell B, Murcia MA, Chirico S, Aruoma OI (1995) Free radicals and antioxidants in food and in vivo: what they do and how they work. Crit Rev Food Sci Nutr 35:7

    Article  CAS  Google Scholar 

  • Handelman GJ, Cao G, Walter MF, Nightingale ZD, Paul GL, Prior RL et al (1999) Antioxidant capacity of oat (Avena sativa L.) Extracts. 1. Inhibition of low-density lipoprotein oxidation and oxygen radical absorbance capacity. J Agric Food Chem 47:4888. doi:10.1021/jf990529j

    CAS  Google Scholar 

  • Hassimotto NMA, Genovese MI, Lajolo FM (2005) Antioxidant activity of dietary fruits, vegetables and commercial frozen fruit pulps. J Agric Food Chem 53:2928. doi:10.1021/jf047894h

    CAS  Google Scholar 

  • Hort MA, DalBó S, Costa Brighente IM, Pizzolatti MG, Pedrosa RC, Ribeiro-do-Valle RM (2008) Antioxidant and hepatoprotective effects of Cyathea phalerata Mart. (Cyatheaceae). Basic Clin Pharmacol Toxicol 103:17–24. doi:10.1111/j.1742-7843.2008.00214.x

    CAS  Google Scholar 

  • Hu C, Zhang Y, Kitts DD (2000) Evaluation of antioxidant and prooxidant activity of bamboo Phyllostachys nigra var. henonis leaf extract in vitro. J Agric Food Chem 48:3170. doi:10.1021/jf0001637

    CAS  Google Scholar 

  • Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Deemer EK (2002a) Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated β-cyclodextrin as the solubility enhancer. J Agric Food Chem 50:1815. doi:10.1021/jf0113732

    CAS  Google Scholar 

  • Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Deemer EK (2002b) High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J Agric Food Chem 50:4437. doi:10.1021/jf0201529

    CAS  Google Scholar 

  • Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841. doi:10.1021/jf030723c

    CAS  Google Scholar 

  • Huang J-C, Li D-J, Diao J-C, Hou J, Yuan J-L, Zou G-L (2007) A novel fluorescent method for determination of peroxynitrite using folic acid as a probe. Talanta 72(4):1283. doi:10.1016/j.talanta.2007.01.033

    CAS  Google Scholar 

  • Jaffar N-Z, Dan Z, Christopher S, John BD, Jan K, John H (2006) The use of Pholasin® as a probe for the determination of plasma total antioxidant capacity. Clin Biochem 39(1):55. doi:10.1016/j.clinbiochem.2005.09.011

    CAS  Google Scholar 

  • Joshi R, Kumar SM, Satyamoorthy K, Unnikrissan MK, Mukherjee T (2005) Free radical reactions and antioxidant activities of sesamol: pulse radiolytic and biochemical studies. J Agric Food Chem 53:2696. doi:10.1021/jf0489769

    CAS  Google Scholar 

  • Katsube N, Iwashita K, Tsushida T, Yamaki K, Kobori M (2003) Induction of apoptosis in cancer cells by bilberry (Vaccinium myrtillus) and the anthocyanins. J Agric Food Chem 51:68. doi:10.1021/jf025781x

    CAS  Google Scholar 

  • Katsube N, Tabata H, Ohta Y, Yamasaki Y, Anuurad E, Shiwaku K et al (2004) Screening for antioxidant activity in edible plant products: comparison of low-density lipoprotein oxidation assay, DPPH radical scavenging assay, and Folin-Ciocalteu Assay. J Agric Food Chem 52:2391. doi:10.1021/jf035372g

    CAS  Google Scholar 

  • Kumaran A, Karunakaran RJ (2006) Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chem 97(1):109. doi:10.1016/j.foodchem.2005.03.032

    CAS  Google Scholar 

  • Laguerre M, Lecomte J, Villeneuve P (2007) Evaluation of the ability of antioxidants to counteract lipid oxidation: existing methods, new trends and challenges. Prog Lipid Res 46:244. doi:10.1016/j.plipres.2007.05.002

    CAS  Google Scholar 

  • Lavelli V, Hippeli S, Peri C, Elstner EF (1999) Evaluation of radical scavenging activity of fresh and air-dried tomatoes by three model reactions. J Agric Food Chem 47:3826. doi:10.1021/jf981372i

    CAS  Google Scholar 

  • Lee JH, Ozcelik B, Min DB (2003) Electron donation mechanisms of β-carotene as a free radical scavenger. J Food Sci 68(3):861. doi:10.1111/j.1365-2621.2003.tb08256.x

    CAS  Google Scholar 

  • Lee J, Koo N, Min DB (2004) Reactive oxygen species, aging and antioxidative nutraceuticals. Compr Rev Food Sci Saf 3(1):21. doi:10.1111/j.1541-4337.2004.tb00058.x

    CAS  Google Scholar 

  • Li L, Abe Y, Kanagawa K, Usui N, Imai K, Mashino T, Mochizuki M, Miyata N (2004) Distinguishing the 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-OH radical quenching effect from the hydroxyl radical scavenging effect in the ESR spin-trapping method. Anal Chim Acta 512(1):121. doi:10.1016/j.aca.2004.02.020

    CAS  Google Scholar 

  • Liang J, Liu Z-H, Cai R-X (2005) A novel method for determination of peroxynitrite based on hemoglobin catalyzed reaction. Anal Chim Acta 530(2):317. doi:10.1016/j.aca.2004.09.025

    CAS  Google Scholar 

  • Ma Z, Zhao B, Yuan, Z (1999) Application of electrochemical and spin trapping techniques in the investigation of hydroxyl radicals. Anal Chim Acta 389:213

    CAS  Google Scholar 

  • MacDonald-Wicks LK, Wood LG, Garg ML (2006) Methodology for the determination of biological antioxidant capacity in vitro: a review. J Sci Food Agric 86(13):2046. doi:10.1002/jsfa.2603

    CAS  Google Scholar 

  • Madhujith T, Izydorczyk M, Shahidi F (2006) Antioxidant properties of pearled barley fractions. J Agric Food Chem 54:3283

    CAS  Google Scholar 

  • Magalhaes LM, Segundo MA, Reis S, Lima JLFC (2008) Methodological aspects about in vitro evaluation of antioxidant properties. Anal Chim Acta 613:1. doi:10.1016/j.aca.2008.02.047

    CAS  Google Scholar 

  • Maranz S, Wiesman Z, Garti N (2003) Phenolic constituents of shea (Vitellaria paradoxa) kernels. J Agric Food Chem 51:6268. doi:10.1021/jf034687t

    CAS  Google Scholar 

  • Martinez-Tome M, Garcia-Carmona F, Murcia MA (2001) Comparison of the antioxidants and pro-oxidants activities of broccoli amino acids with those of common food additives. J Sci Food Agric 81:1019. doi:10.1002/jsfa.889

    CAS  Google Scholar 

  • Mathew S, Abraham TE (2006) Studies on the antioxidant activities of cinnamon (Cinnamomum verum) bark extracts, through various in vitro models. Food Chem 94:520. doi:10.1016/j.foodchem.2004.11.043

    CAS  Google Scholar 

  • Miller NJ, Rice-Evans CA, Davies MJ, Gopinathan V, Milner A (1993) A novel method for measuring antioxidant capacity and its application to monitoring antioxidant status in premature neonates. Clin Sci 84:407

    CAS  Google Scholar 

  • Min DB, Boff JM (2002) Chemistry and reaction of singlet oxygen in foods. Compr Rev Food Sci Saf 1:58. doi:10.1111/j.1541-4337.2002.tb00007.x

    CAS  Google Scholar 

  • Moore J, Yin J, Yu L (2006) Novel fluorometric assay for hydroxyl radical scavenging capacity (HOSC) estimation. J Agric Food Chem 54:617. doi:10.1021/jf052555p

    CAS  Google Scholar 

  • Naguib YMA (2000) Antioxidant activities of astaxanthin and related carotenoids. J Agric Food Chem 48:1150. doi:10.1021/jf991106k

    CAS  Google Scholar 

  • Nakamura Y, Tsuji S, Tonogai Y (2003) Method for analysis of tannic acid and its metabolites in biological samples: application to tannic acid metabolism in the rat. J Agric Food Chem 51:331. doi:10.1021/jf020847+

    CAS  Google Scholar 

  • Nenadis N, Lazaridou O, Tsimidou MZ (2007) Use of reference compounds in antioxidant activity assessment. J Agric Food Chem 55:5452. doi:10.1021/jf070473q

    CAS  Google Scholar 

  • Niki E (2002) Antioxidant activity: are we measuring it correctly? Nutrition 18:524. doi:10.1016/S0899-9007(02)00773-6

    Google Scholar 

  • Nilsson J, Pillai D, Onning G, Persson C, Nilsson A, Akesson B (2005) Comparison of the 2,2′-azinobis-3-ethylbenzotiazoline-6-sulfonic acid (ABTS) and ferric reducing antioxidant power (FRAP) methods to asses the total antioxidant capacity in extracts of fruit and vegetables. Mol Nutr Food Res 49(3):239. doi:10.1002/mnfr.200400083

    CAS  Google Scholar 

  • Ordoudi SA, Tsimidou MZ (2006) Crocin bleaching assay step by step: observations and suggestions for an alternative validated protocol. J Agric Food Chem 54:1663. doi:10.1021/jf052731u

    CAS  Google Scholar 

  • Ou B, Woodill-Hampsch M, Prior RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49:4619. doi:10.1021/jf010586o

    CAS  Google Scholar 

  • Ou B, Huang D, Woodill-Hampsch M, Flanagan JA, Deemer EK (2002a) Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J Agric Food Chem 50:3122. doi:10.1021/jf0116606

    CAS  Google Scholar 

  • Ou B, Huang D, Woodill-Hampsch M, Flanagan JA, Deemer EK, Prior RL, Huang D (2002b) Novel fluorometric assay for hydroxyl radical prevention capacity using fluorescein as the probe. J Agric Food Chem 50:2772. doi:10.1021/jf011480w

    CAS  Google Scholar 

  • Ozcelik B, Lee JH, Min DB (2003) Effects of light, oxygen, and pH on the absorbance of 2,2-diphenyl-1-picrylhydrazyl (DPPH). J Food Sci 68(2):487. doi:10.1111/j.1365-2621.2003.tb05699.x

    Google Scholar 

  • Ozgen M, Reese RN, Tulio AZ, Scheerens JC, Miller R (2006) Modified ABTS method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and DPPH methods. J Agric Food Chem 54:1151. doi:10.1021/jf051960d

    CAS  Google Scholar 

  • Perez-Jimenez J, Saura-Calixto F (2008) Anti-oxidant capacity of dietary polyphenols determined by ABTS assay: a kinetic expression of the results. Int J Food Sci Technol 48:185

    Google Scholar 

  • Prior RL, Cao G (1999) In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic Biol Med 27(11–12):1173. doi:10.1016/S0891-5849(99)00203-8

    CAS  Google Scholar 

  • Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORAC FL) of plasma and other biological and food samples. J Agric Food Chem 51:3273. doi:10.1021/jf0262256

    CAS  Google Scholar 

  • Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53(8):3101–3113. doi:10.1021/jf0478861

    Google Scholar 

  • Pulido R, Bravo L, Saura-Calixto F (2000) Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem 48:3396. doi:10.1021/jf9913458

    CAS  Google Scholar 

  • Regoli F, Winston GW (1999) Quantification of total oxidant scavenging capacity of antioxidants for peroxynitrite, peroxyl radicals, and hydroxyl radicals. Toxicol Appl Pharmacol 156:96. doi:10.1006/taap.1999.8637

    CAS  Google Scholar 

  • Reichl S, Vocks A, Petkovic M, Schiller J, Arnhold J (2001) The photoprotein Pholasin as a luminescence substrate for detection of superoxide anion radicals and myeloperoxidase activity in stimulated neutrophils. Free Radic Res 35:723. doi:10.1080/10715760100301231

    CAS  Google Scholar 

  • Rivero-Perez MD, Muniz P, Gonzalez-San Jose ML (2007) Antioxidant profile of red wines evaluated by total antioxidant capacity, scavenger activity, and biomarkers of oxidative stress methodologies. J Agric Food Chem 55:5476. doi:10.1021/jf070306q

    CAS  Google Scholar 

  • Roginsky V, Lissi EA (2005) Review of methods to determine chain-breaking antioxidant activity in food. Food Chem 92:235. doi:10.1016/j.foodchem.2004.08.004

    CAS  Google Scholar 

  • Sánchez-Moreno C, Larrauri JA, Saura-Calixto F (1998) A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agric 76:270. doi:10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9

    Google Scholar 

  • Saran M, Summer KH (1999) Assaying for hydroxyl radicals: hydroxylated terephthalate is a superior fluorescence marker than hydroxylated benzoate. Free Radic Res 31(5):429. doi:10.1080/10715769900300991

    CAS  Google Scholar 

  • Schlesier K, Harwat M, Bohm V, Bitsch R (2002) Assessment of antioxidant activity by using different in vitro methods. Free Radic Res 36(2):177. doi:10.1080/10715760290006411

    CAS  Google Scholar 

  • Shahidi F, Liyana-Pathirana CM, Wall DS (2006) Antioxidant activity of white and black sesame seeds and their hull fractions. Food Chem 99(3):478. doi:10.1016/j.foodchem.2005.08.009

    CAS  Google Scholar 

  • Stratil P, Klejdus B, Kuban V (2006) Determination of total content of phenolic compounds and their antioxidant activity in vegetables-evaluation of spectrophotometric methods. J Agric Food Chem 54:607. doi:10.1021/jf052334j

    CAS  Google Scholar 

  • Tai C, Gu X, Zou H, Guo Q (2002) A new simple and sensitive fluorometric method for the determination of hydroxyl radical and its application. Talanta 58(4):661. doi:10.1016/S0039-9140(02)00370-3

    CAS  Google Scholar 

  • Tubaro F, Ghiselli A, Papuzzi P, Maiorino M, Ursini F (1998) Analysis of plasma antioxidant capacity by competition kinetics. Free Radic Biol Med 24:1228. doi:10.1016/S0891-5849(97)00436-X

    CAS  Google Scholar 

  • Valkonen M, Kuusi T (1997) Spectrophotometric assay for total peroxyl radical trapping antioxidant potential in human serum. J Lipid Res 38:823

    CAS  Google Scholar 

  • Velioglu YS, Mazza G, Gao L, Oomah BD (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46(10):4113. doi:10.1021/jf9801973

    CAS  Google Scholar 

  • Vertuani S, Bosco E, Braccioli E, Manfredini S (2004) Water soluble antioxidant capacity of different teas. Determination by Photochemiluminescence. Nutrafoods 3(2):05

    CAS  Google Scholar 

  • Vinson JA, Su XH, Zubik L, Bose P (2001) Phenol antioxidant quantity and quality in foods: fruits. J Agric Food Chem 49:5315. doi:10.1021/jf0009293

    CAS  Google Scholar 

  • Wang Q, Ding F, Zhub N, Li H, Hea P, Fang Y (2003a) Determination of hydroxyl radical by capillary zone electrophoresis with amperometric detection. J Chromatogr A 1016:123. doi:10.1016/S0021-9673(03)01294-9

    CAS  Google Scholar 

  • Wang M, Simon JE, Aviles IF, He K, Zheng Q, Tadmor Y (2003b) Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L). J Agric Food Chem 51(3):601. doi:10.1021/jf020792b

    CAS  Google Scholar 

  • Whitehead TP, Thorpe GHG, Maxwell SRJ (1992) Enhanced chemiluminescent assay for antioxidant capacity in biological fluids. Anal Chim Acta 266:265. doi:10.1016/0003-2670(92)85052-8

    CAS  Google Scholar 

  • Wolfe KL, Liu RH (2007) Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods and dietary supplements. J Agric Food Chem 55:8896. doi:10.1021/jf0715166

    CAS  Google Scholar 

  • Wolfe KL, Kang X, He X, Dong M, Zhang Q, Liu RH (2008) Cellular antioxidant activity of common fruits. J Agric Food Chem 56:8418

    CAS  Google Scholar 

  • Wu X, Beecher G, Holden J, Haytowitz DB, Gebhardt SE, Prior RL (2004) Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J Agric Food Chem 52:4026. doi:10.1021/jf049696w

    CAS  Google Scholar 

  • Yang X, Guo X, Zhao Y (2002) Development of a novel rhodamine-type fluorescent probe to determine peroxynitrite. Talanta 57:883

    CAS  Google Scholar 

  • Yoshioka H, Ohashi Y, Akaboshi M, Senba Y, Yoshioka H (2001) A novel method of measuring hydroxyl radical-scavenging activity of antioxidants using γ-irradiation. Free Radic Res 35:265. doi:10.1080/10715760100300801

    CAS  Google Scholar 

  • Zakharova EA, Yurmazova TA, Nazarov BF, Wildgoose GG, Compton RG (2007) The voltammetric determination of peroxynitrite at a mercury film electrode. N J Chem 31:394. doi:10.1039/b615188d

    CAS  Google Scholar 

  • Zhang H, Joseph J, Vasquez-Vivar J, Karoui H, Nsanzumuhire C, Martasek P, Tordo P, Kalyanaraman B (2000) Detection of superoxide anion using an isotopically labelled nitrone spin trap: potential biological applications. FEBS Lett 473:58. doi:10.1016/S0014-5793(00)01498-8

    CAS  Google Scholar 

  • Zhao H, Kalivendi S, Zhang H, Joseph J, Nithipatikom K, Vasquez-Vivar J, Kalyanaraman B (2003) Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic Biol Med 34(11):1359. doi:10.1016/S0891-5849(03)00142-4

    CAS  Google Scholar 

  • Zhu BZ, Kitrosky N, Chevion M (2000) Evidence of production of hydroxyl radicals by pentachlorophenol metabolites and hydrogen peroxide. A metal-independent organic Fenton reaction. Biochem Biophys Res Commun 270:942. doi:10.1006/bbrc.2000.2539

    CAS  Google Scholar 

  • Zou H, Tai C, Gu X-X, Zhu R-H, Guo, Q-H (2002) A new simple and rapid electrochemical method for the determination of hydroxyl radical generated by Fenton reaction and its application. Anal Bioanal Chem 373:111

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samim Saner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karadag, A., Ozcelik, B. & Saner, S. Review of Methods to Determine Antioxidant Capacities. Food Anal. Methods 2, 41–60 (2009). https://doi.org/10.1007/s12161-008-9067-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-008-9067-7

Keywords

Navigation