Skip to main content
Log in

Improvement of Water Hyacinth Bioconversion by Different Organic and Mineral Acid Pretreatment and the Effect of Post-pretreatment Washing

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Water hyacinth is a non-edible plant having a severe impact on aquatic ecosystems through native vegetation displacement and lower dissolved oxygen concentration. High cellulose and low lignin content make water hyacinth a potential source for biofuel production. Water hyacinth was subjected to acid pretreatment using organic acids (citric acid (CA) and oxalic acid (OA)) and mineral acid (hydrochloric acid (HA)) to enhance enzymatic saccharification, and ethanol and biogas production. Under optimized pretreatment condition, the reducing sugars released from enzymatic saccharifications of CA-, OA-, and HA-pretreated samples increased by 2.56-, 1.71-, and 1.62-fold, respectively, than untreated sample. Maximum ethanol yield (8.97 g/L) was observed for OA-pretreated (1.68-fold increase) than untreated water hyacinth, whereas CA-pretreated sample produced the highest biogas yield (3421.5 mL) after anaerobic digestion for 45 days. The increase in the yield of ethanol and biogas for OA and CA is attributed to the changes in the hemicellulose and lignin structure. The change in the structural morphology was observed through FTIR characterization of untreated and treated water hyacinth. In addition, the effect of post-washing after pretreatment on fermentation efficiency was evaluated and the result suggested that CA residues had no negative effect on ethanol production. Pretreatment of water hyacinth using organic acids could benefit the biorefineries through the biofuel production and reduction of wastewater generated from this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhao L, Sun ZF, Zhang CC, Nan J, Ren NQ, Lee DJ, Chen C (2022) Advances in pretreatment of lignocellulosic biomass for bioenergy production: challenges and perspectives. Bioresour Technol 1(343):126123. https://doi.org/10.1016/j.biortech.2021.126123

    Article  CAS  Google Scholar 

  2. Das A, Ghosh P, Paul T, Ghosh U, Pati BR, Mondal KC (2016) Production of bioethanol as useful biofuel through the bioconversion of water hyacinth (Eichhornia crassipes). 3 Biotech 6(1):1–9. https://doi.org/10.1007/s13205-016-0385-y

    Article  CAS  Google Scholar 

  3. Guragain YN, De Coninck J, Husson F, Durand A, Rakshit SK (2011) Comparison of some new pretreatment methods for second generation bioethanol production from wheat straw and water hyacinth. Bioresour Technol 102:4416–4424. https://doi.org/10.1016/j.biortech.2010.11.125

    Article  CAS  PubMed  Google Scholar 

  4. Sunwoo IY, Kwon JE, Nguyen TH, Jeong GT, Kim SK (2019) Ethanol production from water hyacinth (Eichhornia crassipes) hydrolysate by hyper-thermal acid hydrolysis, enzymatic saccharification and yeasts adapted to high concentration of xylose. Bioprocess Biosyst Eng 42:1367–1374. https://doi.org/10.1007/s00449-019-02136-3

    Article  CAS  PubMed  Google Scholar 

  5. Varanasi JL, Das D (2020) Maximizing biohydrogen production from water hyacinth by coupling dark fermentation and electrohydrogenesis. Int J Hydrogen Energy 45:5227–5238. https://doi.org/10.1016/j.ijhydene.2019.06.030

    Article  CAS  Google Scholar 

  6. Ali SS, Elsamahy T, Abdelfattah A, Mustafa AM, Khalil MA, Mastropetros SG, Kornaros M, Sun J, Azab M (2022) Exploring the potential of anaerobic co-digestion of water hyacinth and cattle dung for enhanced biomethanation and techno-economic feasibility. Fuel 329:125397. https://doi.org/10.1016/j.fuel.2022.125397

    Article  CAS  Google Scholar 

  7. Polprasert C (2015) Organic waste recycling. Water Intell. Online 6:9781780402024–9781780402024. https://doi.org/10.2166/9781780402024

    Article  Google Scholar 

  8. Thamizhakaran Stanley J, Thanarasu A, Senthil Kumar P, Periyasamy K, Raghunandhakumar S, Periyaraman P, Devaraj K, Dhanasekaran A, Subramanian S (2022) Potential pre-treatment of lignocellulosic biomass for the enhancement of biomethane production through anaerobic digestion- a review. Fuel 318:123593. https://doi.org/10.1016/j.fuel.2022.123593

    Article  CAS  Google Scholar 

  9. Cheng YS, Wu ZY, Sriariyanun M (2019) Evaluation of Macaranga tanarius as a biomass feedstock for fermentable sugars production. Bioresour Technol 294:122195. https://doi.org/10.1016/j.biortech.2019.122195

    Article  CAS  PubMed  Google Scholar 

  10. Sarto S, Hildayati R, Syaichurrozi I (2019) Effect of chemical pretreatment using sulfuric acid on biogas production from water hyacinth and kinetics. Renew Energy 132:335–350. https://doi.org/10.1016/j.renene.2018.07.121

    Article  CAS  Google Scholar 

  11. Rezania S, Din MFM, Taib SM, Mohamad SE, Dahalan FA, Kamyab H, Darajeh N, Ebrahimi SS (2018) Ethanol production from water hyacinth (Eichhornia crassipes) using various types of enhancers based on the consumable sugars. Waste Biomass Valorization 9:939–946. https://doi.org/10.1007/s12649-017-9883-3

    Article  CAS  Google Scholar 

  12. Kootstra AMJ, Beeftink HH, Scott EL, Sanders JPM (2009) Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochem Eng J 46:126–131. https://doi.org/10.1016/j.bej.2009.04.020

    Article  CAS  Google Scholar 

  13. Li Z, Fei B, Jiang Z (2014) Comparison of dilute organic and sulfuric acid pretreatment for enzymatic hydrolysis of bamboo. BioResources 9:5652–5661. https://doi.org/10.15376/biores.9.3.5652-5661

    Article  Google Scholar 

  14. Rattanaporn K, Tantayotai P, Phusantisampan T, Pornwongthong P, Sriariyanun M (2018) Organic acid pretreatment of oil palm trunk: effect on enzymatic saccharification and ethanol production. Bioprocess Biosyst Eng 41:467–477. https://doi.org/10.1007/s00449-017-1881-0

    Article  CAS  PubMed  Google Scholar 

  15. Amnuaycheewa P, Hengaroonprasan R, Rattanaporn K, Kirdponpattara S, Cheenkachorn K, Sriariyanun M (2016) Enhancing enzymatic hydrolysis and biogas production from rice straw by pretreatment with organic acids. Ind Crops Prod 87:247–254. https://doi.org/10.1016/j.indcrop.2016.04.069

    Article  CAS  Google Scholar 

  16. Dharmalingam B, Tantayotai P, Panakkal EJ, Cheenkachorn K, Kirdponpattara S, Gundupalli MP, Cheng YS, Sriariyanun M (2022) Organic acid pretreatments and optimization techniques for mixed vegetable waste biomass conversion into biofuel production. BioEnergy Res. https://doi.org/10.1007/s12155-022-10517-y

    Article  Google Scholar 

  17. Gundupalli MP, Sahithi STA, Cheng YS, Tantayotai P, Sriariyanun M (2021) Differential effects of inorganic salts on cellulase kinetics in enzymatic saccharification of cellulose and lignocellulosic biomass. Bioprocess Biosyst Eng 44:2331–2344. https://doi.org/10.1007/s00449-021-02607-6

    Article  CAS  Google Scholar 

  18. Goering HK, Van Soest PJ (1970) Forage fiber analyses (apparatus, reagents, procedures, and some applications). US Agric Res Service 378–598

  19. Federation WE (1999) Standard methods for the examination of water and wastewater standard methods for the examination of water and wastewater. Public Health 51:940–940. https://doi.org/10.2105/AJPH.51.6.940-a

    Article  Google Scholar 

  20. Panakkal EJ, Sriariyanun M, Ratanapoompinyo J, Yasurin P, Cheenkachorn K, Rodiahwati W, Tantayotai P (2022) Influence of sulfuric acid pretreatment and inhibitor of sugarcane bagasse on the production of fermentable sugar and ethanol. Appl Sci Eng Prog 15(1). https://doi.org/10.14416/j.asep.2021.07.006

  21. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  22. Gundupalli MP, Sahithi STA, Panakkal EJ, Asavasanti S, Yasurin P, Cheng YS, Sriariyanun M (2022) Combined effect of hot water and deep eutectic solvent (DES) pretreatment on a lignocellulosic biomass mixture for improved saccharification efficiency. Bioresour Technol Reports 17:100986. https://doi.org/10.1016/j.biteb.2022.100986

    Article  CAS  Google Scholar 

  23. Rachamontree P, Douzou T, Cheenkachorn K, Sriariyanun M, Rattanaporn K (2020) Furfural: a sustainable platform chemical and fuel. Appl Sci Eng Prog 13:3–10. https://doi.org/10.14416/j.asep.2020.01.003

    Article  Google Scholar 

  24. Siqueira G, Arantes V, Saddler JN, Ferraz A, Milagres AMF (2017) Limitation of cellulose accessibility and unproductive binding of cellulases by pretreated sugarcane bagasse lignin. Biotechnol Biofuels 10.https://doi.org/10.1186/s13068-017-0860-7

  25. Tantayotai P, Gundupalli MP, Panakkal EJ, Sriariyanun M, Rattanaporn K, Bhattacharyya D (2021) Differential influence of imidazolium ionic liquid on cellulase kinetics in saccharification of cellulose and lignocellulosic biomass substrate. Appl Sci Eng Prog https://doi.org/10.14416/j.asep.2021.11.003

  26. Singh A, Bishnoi NR (2013) Comparative study of various pretreatment techniques for ethanol production from water hyacinth. Ind Crops Prod 44:283–289. https://doi.org/10.1016/j.indcrop.2012.11.026

    Article  CAS  Google Scholar 

  27. Qin L, Liu Z-H, Li BZ, Dale BE, Yuan YJ (2012) Mass balance and transformation of corn stover by pretreatment with different dilute organic acids. Bioresour Technol 112:319–326. https://doi.org/10.1016/j.biortech.2012.02.134

    Article  CAS  PubMed  Google Scholar 

  28. Oriez V, Peydecastaing J, Pontalier P-Y (2019) Lignocellulosic biomass fractionation by mineral acids and resulting extract purification processes: conditions, yields, and purities. Molecules 24:4273. https://doi.org/10.3390/molecules24234273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scordia D, Cosentino SL, Lee JW, Jeffries TW (2011) Dilute oxalic acid pretreatment for biorefining giant reed (Arundo donax L.). Biomass Bioenerg 35:3018–3024. https://doi.org/10.1016/j.biombioe.2011.03.046

    Article  CAS  Google Scholar 

  30. Marsden W, Gray PP, Nippard GJ, Quinlan MR (1982) Evaluation of the DNS method for analysing lignocellulosic hydrolysates. J Chem Technol Biotechnol 32:1016–1022. https://doi.org/10.1002/jctb.5030320744

    Article  CAS  Google Scholar 

  31. Chotirotsukon C, Raita M, Yamada M, Nishimura H, Watanabe T, Laosiripojana N, Champreda V (2021) Sequential fractionation of sugarcane bagasse using liquid hot water and formic acid-catalyzed glycerol-based organosolv with solvent recycling. Bioenergy Res 14:135–152. https://doi.org/10.1007/s12155-020-10181-0

    Article  CAS  Google Scholar 

  32. Zhang T, Kumar R, Wyman CE (2013) Sugar yields from dilute oxalic acid pretreatment of maple wood compared to those with other dilute acids and hot water. Carbohydr Polym 92:334–344. https://doi.org/10.1016/j.carbpol.2012.09.070

    Article  CAS  PubMed  Google Scholar 

  33. Lee JW, Houtman CJ, Kim HY, Choi IG, Jeffries TW (2011) Scale-up study of oxalic acid pretreatment of agricultural lignocellulosic biomass for the production of bioethanol. Bioresour Technol 102:7451–7456. https://doi.org/10.1016/j.biortech.2011.05.022

    Article  CAS  PubMed  Google Scholar 

  34. Ruzene DS, Silva DP, Vicente AA, Gonçalves AR, Teixeira JA (2008) An alternative application to the Portuguese agro-industrial residue: Wheat straw. Appl Biochem Biotechnol 147:85–96. https://doi.org/10.1007/s12010-007-8066-2

    Article  CAS  PubMed  Google Scholar 

  35. Thulluri C, Goluguri BR, Konakalla R, Reddy Shetty P, Addepally U (2013) The effect of assorted pretreatments on cellulose of selected vegetable waste and enzymatic hydrolysis. Biomass Bioenerg 49:205–213. https://doi.org/10.1016/j.biombioe.2012.12.022

    Article  CAS  Google Scholar 

  36. Yang X, Liu X, Sheng Y, Yang H, Xu X, Tao Y, Zhang M (2022) Optimization of different acid-catalyzed pretreatments on co-production of xylooligosaccharides and glucose from sorghum stalk. Polymers (Basel) 14:830. https://doi.org/10.3390/polym14040830

    Article  CAS  PubMed  Google Scholar 

  37. Gao J, Qu L, Qian J, Wang Z, Li Y, Yi S, He Z (2020) Effects of combined acid-alkali and heat treatment on the physiochemical structure of Moso bamboo. Sci Rep 10.https://doi.org/10.1038/s41598-020-63907-7

  38. Dong SJ, Zhang BX, Gao YF, Hu XM (2015) An efficient process for pretreatment of lignocelluloses in functional ionic liquids. Int J Polym Sci. https://doi.org/10.1155/2015/978983

    Article  Google Scholar 

  39. Bondesson PM, Galbe M, Zacchi G (2013) Ethanol and biogas production after steam pretreatment of corn stover with or without the addition of sulphuric acid. Biotechnol Biofuels 6:11. https://doi.org/10.1186/1754-6834-6-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yoon LW, Rafi IS, Ngoh GC (2022) Feasibility of eliminating washing step in bioethanol production using deep eutectic solvent pretreated lignocellulosic substrate. Chem Eng Res Des 179:257–264. https://doi.org/10.1016/j.cherd.2022.01.031

    Article  CAS  Google Scholar 

  41. Toquero C, Bolado S (2014) Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresour Technol 157:68–76. https://doi.org/10.1016/j.biortech.2014.01.090

    Article  CAS  PubMed  Google Scholar 

  42. Frederick N, Zhang N, Djioleu A, Ge X, Xu J, Carrier DJ (2013) The effect of washing dilute acid pretreated poplar biomass on ethanol yields. In: Sustainable degradation of lignocellulosic biomass - techniques, applications and commercialization. InTech.https://doi.org/10.5772/56129

  43. Lee C, Zheng Y, VanderGheynst JS (2015) Effects of pretreatment conditions and post-pretreatment washing on ethanol production from dilute acid pretreated rice straw. Biosyst Eng 137:36–42. https://doi.org/10.1016/j.biosystemseng.2015.07.001

    Article  Google Scholar 

  44. Nielsen M, Arneborg N (2007) The effect of citric acid and pH on growth and metabolism of anaerobic Saccharomyces cerevisiae and Zygosaccharomyces bailii cultures. Food Microbiol 24:101–105. https://doi.org/10.1016/j.fm.2006.03.005

    Article  CAS  PubMed  Google Scholar 

  45. Sriariyanun M, Mutrakulcharoen P, Tepaamorndech S, Cheenkachorn K, Rattanaporn K (2019) A rapid spectrophotometric method for quantitative determination of ethanol in fermentation products. Orient J Chem 35:744–750. https://doi.org/10.13005/ojc/350234

    Article  CAS  Google Scholar 

  46. Karuppiah T, Ebenezer Azariah V (2019) Biomass pretreatment for enhancement of biogas production. Anaerobic Digestion Intech 150:111509. https://doi.org/10.5772/intechopen.82088

    Article  CAS  Google Scholar 

  47. Vanegas CH, Hernon A, Bartlett J (2015) Enzymatic and organic acid pretreatment of seaweed: effect on reducing sugars production and on biogas inhibition. Int J Ambient Energy 36:2–7. https://doi.org/10.1080/01430750.2013.820143

    Article  CAS  Google Scholar 

  48. Ruyters S, Mukherjee V, Verstrepen KJ et al (2015) Assessing the potential of wild yeasts for bioethanol production. J Ind Microbiol Biot 42:39–48. https://doi.org/10.1007/s10295-014-1544-y

    Article  CAS  Google Scholar 

  49. Harner NK, Wen X, Bajwa PK, Austin GD, Ho CY, Habash MB, Trevors JT, Lee H (2015) Genetic improvement of native xylose-fermenting yeasts for ethanol production. J Ind Microbiol Biot 42:1–20. https://doi.org/10.1007/s10295-014-1535-z

    Article  CAS  Google Scholar 

Download references

Funding

The authors are thankful to the King Mongkut’s University of Technology North Bangkok (Grant Contract No. KMUTNB-66-KNOW-03, KMUTNB-Post-65–05) and Srinakharinwirot University (Grant Contract No. 410/2565-SWU) for the financial support during this work.

Author information

Authors and Affiliations

Authors

Contributions

Marttin Paulraj Gundupalli: investigation, writing—original draft. Prapakorn Tantayotai: investigation, methodology. Santi Chuetor: investigation, writing—reviewing and editing. Kraipat Cheenkachorn: methodology, reviewing and editing. Sanket Joshi: reviewing and editing. Debraj Bhattacharyya: reviewing and editing. Malinee Sriariyanun: conceptualization, data curation, writing—reviewing and editing, funding acquisition, project administration.

Corresponding author

Correspondence to Malinee Sriariyanun.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17.6 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gundupalli, M.P., Tantayotai, P., Chuetor, S. et al. Improvement of Water Hyacinth Bioconversion by Different Organic and Mineral Acid Pretreatment and the Effect of Post-pretreatment Washing. Bioenerg. Res. 16, 1718–1732 (2023). https://doi.org/10.1007/s12155-022-10528-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10528-9

Keywords

Navigation