Skip to main content

Advertisement

Log in

CO2 Biofixation via Spirulina sp. Cultures: Evaluation of Initial Biomass Concentration in Tubular and Raceway Photobioreactors

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Many aspects can influence the CO2 biofixation efficiency by microalgae, including CO2 concentration, initial biomass concentration and photobioreactor configuration. This study evaluated two photobioreactors (raceway and tubular) and two initial biomass concentrations (0.2 and 0.4 g L−1) in the growth parameters and in the CO2 biofixation by Spirulina sp. LEB 18 cultures. The carbon source was replaced by 10% (v/v−1) of CO2 (0.05 vvm). Tubular photobioreactor cultures provided an increase of 43 and 62%, respectively, in the maximum specific growth rate and in the CO2 biofixation efficiency, compared with the raceway photobioreactor cultures. The lowest initial biomass concentration evaluated (0.2 g L−1) increased the growth parameter results, with a maximum specific growth rate of 42% higher than the cultures using the highest initial biomass concentration (0.4 g L−1). Spirulina sp. LEB 18 cultures in tubular photobioreactor with 0.2 g L−1 of initial biomass concentration showed a potential for CO2 biofixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Kroumov AD, Módenes AN, Trigueros DEG, Espinoza-Quiñones FR, Borba CE, Scheufele FB, Hinterholz CL (2016) A systems approach for CO2 fixation from flue gas by microalgae—theory review. Process Biochem 51:1817–1832. https://doi.org/10.1016/j.procbio.2016.05.019

    Article  CAS  Google Scholar 

  2. Duarte JH, Fanka LS, Costa JAV (2016) Utilization of simulated flue gas containing CO2, SO2, NO and ash for Chlorella fusca cultivation. Bioresour Technol 214:159–165. https://doi.org/10.1016/j.biortech.2016.04.078

    Article  CAS  PubMed  Google Scholar 

  3. Renuka N, Guldhe A, Prasanna RP, Singh BF (2018) Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnol Adv 36:1255–1273. https://doi.org/10.1016/j.biotechadv.2018.04.004

    Article  CAS  PubMed  Google Scholar 

  4. Delattre C, Pierre G, Laroche C, Michaud P (2016) Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv 34:1159–1179. https://doi.org/10.1016/j.biotechadv.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  5. Vonshak A (2002) Spirulina platensis (Arthropsira): physiology, cell-biology and biotechnology

  6. Braga VS, Moreira JB, Costa JAV, de Morais MG (2019) Enhancement of the carbohydrate content in Spirulina by applying CO2, thermoelectric fly ashes and reduced nitrogen supply. Int J Biol Macromol 123:1241–1247. https://doi.org/10.1016/j.ijbiomac.2018.12.037

    Article  CAS  PubMed  Google Scholar 

  7. Wang F, Liu YH, Ma Y, Cui ZG, Shao LL (2017) Application of TMA-PEG to promote C-phycocyanin extraction from S. platensis in the PEG ATPS. Process Biochem 52:283–294. https://doi.org/10.1016/j.procbio.2016.11.006

    Article  CAS  Google Scholar 

  8. Chen CY, Kao PC, Tan CH, Show PL, Cheah WY, Lee WL, Ling TC, Chang JS (2016) Using an innovative pH-stat CO2 feeding strategy to enhance cell growth and C-phycocyanin production from Spirulina platensis. Biochem Eng J 122:78–85. https://doi.org/10.1016/j.bej.2016.04.009

    Article  CAS  Google Scholar 

  9. da Rosa GM, Moraes LM, de Souza d RAZ, Costa JAV (2016) Spirulina cultivation with a CO2 absorbent: influence on growth parameters and macromolecule production. Bioresour Technol 200:528–534. https://doi.org/10.1016/j.biortech.2015.10.025

    Article  CAS  PubMed  Google Scholar 

  10. Coronado-Apodaca KG, Vital-Jácome M, Buitrón G, Quijano G (2019) A step-forward in the characterization of microalgal consortia: microbiological and kinetic aspects. Biochem Eng J 145:170–176. https://doi.org/10.1016/j.bej.2019.02.021

    Article  CAS  Google Scholar 

  11. Zhao B, Su Y (2014) Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew Sust Energ Rev 31:121–132. https://doi.org/10.1016/j.rser.2013.11.054

    Article  CAS  Google Scholar 

  12. Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS (2008) Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol 99:3389–3396. https://doi.org/10.1016/j.biortech.2007.08.013

    Article  CAS  PubMed  Google Scholar 

  13. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232. https://doi.org/10.1016/j.rser.2009.07.020

    Article  CAS  Google Scholar 

  14. Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028. https://doi.org/10.1016/j.biortech.2007.01.046

    Article  CAS  PubMed  Google Scholar 

  15. Singh RN, Sharma S (2012) Development of suitable photobioreactor for algae production - a review. Renew Sust Energ Rev 16:2347–2353. https://doi.org/10.1016/j.rser.2012.01.026

    Article  CAS  Google Scholar 

  16. Costa JAV, Colla LM, Filho PD (2004) Improving Spirulina platensis biomass yield using a fed-batch process. Bioresour Technol 92:237–241. https://doi.org/10.1016/j.biortech.2003.09.013

    Article  CAS  PubMed  Google Scholar 

  17. de Morais MG, Costa JAV (2007) Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Convers Manag 48:2169–2173. https://doi.org/10.1016/j.enconman.2006.12.011

    Article  CAS  Google Scholar 

  18. Costa JAV, Colla LM, Filho PD, Kabke K, Weber A (2002) Modelling of Spirulina platensis growth in fresh water using response surface methodology. World J Microbiol Biotechnol 63:603–607. https://doi.org/10.1023/A:1016822717583

    Article  Google Scholar 

  19. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  20. Deamici KM, Costa JAV, Santos LO (2016) Magnetic fields as triggers of microalga growth: evaluation of its effect on Spirulina sp. Bioresour Technol 220:62–67. https://doi.org/10.1016/j.biortech.2016.08.038

    Article  CAS  PubMed  Google Scholar 

  21. Deamici KM, Santos LO, Costa JAV (2018) Magnetic field action on outdoor and indoor cultures of Spirulina: evaluation of growth, medium consumption and protein profile. Bioresour Technol 249:168–174. https://doi.org/10.1016/j.biortech.2017.09.185

    Article  CAS  PubMed  Google Scholar 

  22. Mendoza JL, Granados MR, de Godos I, Acién FG, Molina E, Heaven S, Banks CJ (2013) Oxygen transfer and evolution in microalgal culture in open raceways. Bioresour Technol 137:188–195. https://doi.org/10.1016/j.biortech.2013.03.127

    Article  CAS  PubMed  Google Scholar 

  23. Mehar J, Shekh AMUN, Sarada R, Chauhan VS, Mudliar S (2019) Automation of pilot-scale open raceway pond: a case study of CO2-fed pH control on Spirulina biomass, protein and phycocyanin production. J CO2 Util 33:384–393. https://doi.org/10.1016/j.jcou.2019.07.006

    Article  CAS  Google Scholar 

  24. Barceló-Villalobos M, Guzmán Sánchez JL, Martín Cara Sánchez Molina IJA, Acién Fernández FG (2018) Analysis of mass transfer capacity in raceway reactors. Algal Res 35:91–97. https://doi.org/10.1016/j.algal.2018.08.017

    Article  Google Scholar 

  25. Duarte JH, de Morais EG, Radmann EM, Costa JAV (2017) Biological CO2 mitigation from coal power plant by Chlorella fusca and Spirulina sp. Bioresour Technol 234:472–475. https://doi.org/10.1016/j.biortech.2017.03.066

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge CAPES (Coordination for the Improvement of Higher Education Personnel), CGTEE (Company of Thermal Generation of Electric Power), CNPq (National Council of Technological and Scientific Development) and MCTIC (Ministry of Science Technology, Innovation and Communication).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Alberto Vieira Costa.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, J.H., Fanka, L.S. & Costa, J.A.V. CO2 Biofixation via Spirulina sp. Cultures: Evaluation of Initial Biomass Concentration in Tubular and Raceway Photobioreactors. Bioenerg. Res. 13, 939–943 (2020). https://doi.org/10.1007/s12155-020-10117-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10117-8

Keywords

Navigation