Skip to main content

Advertisement

Log in

Catalytic Supercritical Water Gasification of Empty Palm Fruit Bunches Using ZnO-Doped Ni–CaO Catalyst for Hydrogen Production

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Supercritical water gasification (SCWG) of empty palm fruit bunches (EFBs) was investigated using ZnO-doped Ni–CaO catalysts for hydrogen-rich product gas. The catalysts were prepared via wet impregnation technique and characterized using XRD, BET, TPR–H2, and TPD–CO2. SCWG reactions were carried out 0.3 g of EFBs added to 5 wt% of the catalyst in 8 mL of deionized at 380 °C and the product gases were analyzed using gas chromatography. Incorporation of ZnO and Ni into CaO was found to be very active in promoting the water gas shift (WGS). From the various concentrations of dopants, 5 wt% ZnO with 5 wt% Ni was found to be the optimum loading on CaO, showing the highest hydrogen production (105.7 mmol mL−1). Besides, the formation of a Ni.8Zn.2O phase from the strong interaction between the dopants was found to be an active phase in promoting the WGS reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rodriguez Correa C, Kruse A (2018) Supercritical water gasification of biomass for hydrogen production-review. J Supercrit Fluids 133:573–590

    Article  CAS  Google Scholar 

  2. Phang KY, Lau SW (2017) A survey on the usage of biomass wastes from palm oil mills on sustainable development of oil palm plantations in Sarawak. IOP Conf Ser: Mater Sci Eng 206:012091. https://doi.org/10.1088/1757-899X/206/1/012091)

    Article  Google Scholar 

  3. Agensi Innovasi Malaysia (2013) National Biomass Strategy 2020: new wealth creation for Malaysia’s biomass industry; AIM: Selangor, Malaysia

  4. Matsumura Y, Minowa T, Potic B, Kersten SRA, Prins W, van Swaaij WPM, de Beld BV, Elliott DC, Neuenschwander GG, Kruse A, Antal MJ Jr (2005) Biomass gasification in near- and super-critical water: status and prospects. Biomass Bioenergy 29:269–292

    Article  CAS  Google Scholar 

  5. Watanabe M, Inomata H, Osada M, Sato T, Adschiri T, Arai K (2003) Catalytic effects of NaOH and ZrO2 for partial oxidative gasification of n-hexadecane and lignin in supercritical water. Fuel 82(5):545–552

    Article  CAS  Google Scholar 

  6. Wang J, Takarada T (2001) Role of calcium hydroxide in supercritical water gasification of low-rank coal. Energy Fuel 15(2):356–362

    Article  CAS  Google Scholar 

  7. Schmieder H, Abeln J, Boukis N, Dinjus E, Kruse A, Kluth M, Petrich G, Sadri E, Schacht M (2000) Hydrothermal gasification of biomass and organic wastes. J Supercrit Fluids 17(2):145–153

    Article  CAS  Google Scholar 

  8. Kruse A, Faquir M (2007) Hydrothermal biomass gasification – effects of salts, backmixing, and their interaction. Chem Eng Technol 30(6):749–754

    Article  CAS  Google Scholar 

  9. Xu D, Wang S, Hu X, Chen C, Zhang Q, Gong Y (2009) Catalytic gasification of glycine and glycerol in supercritical water. Int J Hydrogen Energ 34:5357–5364

    Article  CAS  Google Scholar 

  10. Guo Y, Wang SZ, Xu DH, Gong YH, Ma HH, Tang XY (2010) Review of catalytic supercritical water gasification for hydrogen production from biomass. Renew Sust Energ Rev 14(1):334–343

    Article  CAS  Google Scholar 

  11. Azadi P, Farhood R (2011) Review of heterogeneous catalyst for sub- and supercritical water gasification of biomass and wastes. Int J Hydrogen Energ 36:9529–9541

    Article  CAS  Google Scholar 

  12. Xu X, Matsumura Y, Stenberg J, Antal MJJ (1996) Carbon-catalyzed gasification of organic feedstocks in supercritical water. Ind Eng Chem Res 35(8):2522–2530

    Article  CAS  Google Scholar 

  13. Yamaguchi A, Hiyoshi N, Sato O, Bando KK, Osada M, Shirai M (2009) Hydrogen production from woody biomass over supported metal catalysts in supercritical water. Catal Today 146(6):192–195

    Article  CAS  Google Scholar 

  14. Azadi P, Afif E, Azadi F, Farnood R (2012) Screening of nickel catalyst for selective hydrogen production using supercritical water gasification of glucose. Green Chem 14:1766–1777

    Article  CAS  Google Scholar 

  15. Osada M, Sato O, Arai K, Shirai M (2006) Stability of supported ruthenium catalysts for lignin gasification in supercritical water. Energy Fuel 20(6):2337–2343

    Article  CAS  Google Scholar 

  16. Cao C, Zhang Y, Cao W, Jin H, Guo L, Huo Z (2017) Transition metal oxides as catalysts for hydrogen production from supercritical water gasification of glucose. Catal Lett 147:828–836

    Article  CAS  Google Scholar 

  17. Zhang R, Jiang W, Cheng L, Sun B, Sun D, Bi J (2010) Hydrogen production from lignite via supercritical water in flow-type reactor. Int J Hydrogen Energ 35(21):11810–11815

    Article  CAS  Google Scholar 

  18. Xia WX, Hou YH, Chang G, Weng WZ, Han GB, Wan HL (2012) Partial oxidation of methane into syngas (H2 + CO) over effective high-dispersed Ni/SiO2 catalysts synthesized by a sol–gel method. Int J Hydrogen Energ 37:8343–8353

    Article  CAS  Google Scholar 

  19. Gaskell KJ, Starace A, Langell MA (2007) ZnxNi1-xO rocksalt oxide surfaces: novel environment for Zn2+ and its effect on the NiO band structure. J Phys Chem C 111:13912–13921

    Article  CAS  Google Scholar 

  20. Taufiq-Yap YH, Sivasangar S, Salmiaton A (2012) Enhancement of hydrogen production by secondary metal oxide dopants on NiO/CaO material for catalytic gasification of empty palm fruit bunches. Energ 47:158–165

    Article  CAS  Google Scholar 

  21. Garcia V, Fernandez JJ, Ruiz W, Mondragon F, Moreno A (2009) Effect of MgO addition on the basicity of Ni/ZrO2 and on its catalytic activity in carbon dioxide reforming of methane. Catal Commun 11(4):240–246

    Article  CAS  Google Scholar 

  22. Taufiq-Yap YH, Lee HV, Hussein MZ, Yunus RR (2011) Calcium-based mixed oxide catalysts for methanolysis of Jatropha curcasoil to biodiesel. Biomass Bioenergy 35:827–834

    Article  CAS  Google Scholar 

  23. Teo SH, Rashid U, Taufiq-Yap YH (2014) Biodiesel production from crude Jatropha Curcas oil using calcium based mixed oxide catalysts. Fuel 136:244–252

    Article  CAS  Google Scholar 

  24. Yan B, Wu J, Xie C, He F, Wei C (2009) Supercritical water gasification with Ni/ZrO2 catalyst for hydrogen production from model wastewater of polyethylene glycol. J Supercrit Fluids 50(2):155–161

    Article  CAS  Google Scholar 

  25. Tang CW, Chuang SSC (2014) The effect of reduction of pretreated NiO-ZnO catalysts on the water gas shift reaction for hydrogen production as studied by in situ DRIFTS/MS. Int J Hydrogen Energ 39(2):788–797

    Article  CAS  Google Scholar 

  26. Brown R, Cooper ME, Whan DA (1982) Temperature programmed reduction of alumina-supported iron, cobalt and nickel bimetallic catalysts. Appl Catal 3:177–186

    Article  CAS  Google Scholar 

  27. Zhang X, Liu J, Jing Y, Xie Y (2003) Support effects on the catalytic behavior of NiO/Al2O3 for oxidative dehydrogenation of ethane to ethylene. Appl Catal A: Gene 240(1–2):143–150

    Article  CAS  Google Scholar 

  28. Li C, Chen YW (1995) Temperature-programmed-reduction studies of nickel oxide/alumina catalysts: effects of the preparation method. Thermochim Acta 256(2):457–465

    Article  CAS  Google Scholar 

  29. Barati M, Babatabar M, Tavasoli A, Dalai AK, Das U (2014) Hydrogen production via supercritical water gasification of bagasse using unpromoted and zinc promoted Ru/γ-Al2O3 nano catalysts. Fuel Process Technol 123:140–148

    Article  CAS  Google Scholar 

  30. Sato T, Inda K, Itoh N (2011) Gasification of bean curd refuse with carbon supported noble metal catalysts in supercritical water. Biomass Bioenergy 35(3):1245–1251

    Article  CAS  Google Scholar 

  31. Hao X, Guo L, Zhang X, Guan Y (2005) Hydrogen production from catalytic gasification of cellulose in supercritical water. Chem Eng J 110(1–3):57–65

    Article  CAS  Google Scholar 

  32. Sivasangar S, Mastuli MS, Islam A, Taufiq Yap YH (2015) Screening of modified CaO-based catalysts with a series of dopants for the supercritical water gasification of empty palm fruit bunches to produce hydrogen. RSC Adv 5:36798–36808

    Article  CAS  Google Scholar 

  33. Mastuli MS, Kamarulzaman N, Kasim MF, Sivasangar S, Saiman MI, Taufiq-Yap YH (2017) Catalytic gasification of oil palm frond biomass in supercritical water using MgO supported Ni, Cu and Zn oxides as catalysts for hydrogen production. Int J Hydrog Energy 42:11215–11228

    Article  CAS  Google Scholar 

  34. Azadi P, Khan S, Strobel F, Azadi F, Farnood R (2012) Hydrogen production from cellulose, lignin, bark and model carbohydrates in supercritical water using nickel and ruthenium catalysts. Appl Catal B Environ 117-118:330–338

    Article  CAS  Google Scholar 

  35. Lee IG (2011) Effect of metal addition to Ni/activated charcoal catalyst on gasification of glucose in supercritical water. Int J Hydrogen Energ 36(15):8869–8877

    Article  CAS  Google Scholar 

  36. Elliott DC, Hallen RT, Sealock LJ Jr (1983) Aqueous catalyst systems for the water-gas shift reaction. 2. Mechanism of basic catalysis. Ind Eng Chem Prod Res Dev 22:431–435

    Article  CAS  Google Scholar 

  37. Xu CC, Donald J (2012) Upgrading peat to gas and liquid fuels in supercritical water with catalysts. Fuel 102:16–25

    Article  CAS  Google Scholar 

  38. Sivasangar S, Zainal Z, Salmiaton A, Taufiq-Yap YH (2015) Supercritical water gasification of empty fruit bunches from oil palm for hydrogen production. Fuel 143:563–569

    Article  CAS  Google Scholar 

  39. Minowa T, Zhen F, Ogi T (1998) Cellulose decomposition in hot-compressed water with alkali or nickel catalyst. J Supercrit Fluids 13(1–3):253–259

    Article  CAS  Google Scholar 

  40. Tiong L, Komiyama M (2019) Supercritical water gasification of microalga Chlorella vulgaris over supported Ru. J Supercrit Fluids 144:1–7

    Article  CAS  Google Scholar 

  41. Osada M, Sato T, Watanabe W, Adschiri T, Arai K (2004) Low-temperature catalytic gasification of lignin and cellulose with a ruthenium catalyst in supercritical water. Energy Fuel 18:327–333

    Article  CAS  Google Scholar 

  42. Lu Y, Zhu Y, Li S, Zhang X, Guo L (2014) Behavior of nickel catalysts in supercritical water gasification of glucose: influence of support. Biomass Bioenergy 67:125–136

    Article  CAS  Google Scholar 

Download references

Funding

The authors express great appreciation to financial support from the Ministry of Higher Education of Long Term Research Grant Scheme (LRSG) NanoMITE (vot no. 5526308) and Universiti Putra Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. H. Taufiq-Yap or S. Sivasangar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taufiq-Yap, Y.H., Sivasangar, S. & Surahim, M. Catalytic Supercritical Water Gasification of Empty Palm Fruit Bunches Using ZnO-Doped Ni–CaO Catalyst for Hydrogen Production. Bioenerg. Res. 12, 1066–1076 (2019). https://doi.org/10.1007/s12155-019-10031-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-019-10031-8

Keywords

Navigation