Skip to main content

Advertisement

Log in

Overwintering Ability and High-Yield Biomass Production of Erianthus arundinaceus in a Temperate Zone in Japan

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Erianthus arundinaceus, a warm-season perennial species in the Gramineae family, is currently being considered as a bioenergy crop candidate due to its capacity for high yields. Several experiments to explore this possibility have been conducted in Nasushiobara, Japan, where the mean minimum air temperature in January over the last three decades has been − 4.4 °C. Some accessions and breeding lines have demonstrated overwintering abilities, and annual dry matter yields of up to 52 t ha−1 were recorded in the 7th year after planting. Cutting to a 0.05-m height in February contributed more to subsequent regrowth and yield than did similar cutting in November. However, when performed in November, cutting to a 0.3-m height was more beneficial to subsequent regrowth and yield than cutting to a 0.05-m height. Allowing the foliage to run dry during winter led to a dry (approximately 70% dry matter ratio) biomass harvest in late winter. During winter, nutrient remobilization within the plants decreases nutrient removal from the soil. Although nitrogen fertilizer use efficiency was quite high (60%), only 20% of the nitrogen in an individual plant in the 2nd year after planting originated from fertilizer. This was likely due to a large amount of nitrogen obtained from non-fertilizer sources, i.e., soil and stored in the stubble from the previous harvest. Future experiments should focus on designing a fertilizer application program that could lead to sustainable and long-term high-yield E. arundinaceus biomass production in temperate zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227. https://doi.org/10.1016/S0961-9534(00)00032-5

    Article  CAS  Google Scholar 

  2. Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361. https://doi.org/10.1016/S0961-9534(03)00030-8

    Article  Google Scholar 

  3. Kobayashi M (2008) Outline of energy crop for biomass gasification methanol synthesis. J Crop Res 53:91–96 (In Japanese with English summary)

    Google Scholar 

  4. Hattori T, Morita S (2010) Energy crops for sustainable bioethanol production: which, where and how? Plant Prod Sci 13:221–234. https://doi.org/10.1626/pps.13.221

    Article  Google Scholar 

  5. Watson L, Dallwitz MJ (1992) Erianthus Michx. In: The grass genera of the world. CAB International, Wallingford, pp 374–376

    Google Scholar 

  6. Jackson P, Henry RJ (2011) Erianthus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, Industrial crops. Springer, Berlin, pp 97–107. https://doi.org/10.1007/978-3-642-21102-7_5

    Chapter  Google Scholar 

  7. Okuizumi H, Deuanhaksa C, Tagane S, Terajima Y, Uwatoko N, Noguchi T, Nonaka E, Intabon K, Gau M, Sugimoto A (2011) Collaborative exploration of Sorghum, Zea, Saccharum and their relative wild genetic resources in Laos, January, 2011. Annual rep on exploration and introduction of plant. Genet Res 27:129–155

    Google Scholar 

  8. Tagane S, Ponragdee W, Sansayawichai T, Sugimoto A, Terajima Y (2012) Characterization and taxonomical note about Thai Erianthus germplasm collection: the morphology, flowering phenology and biogeography among E. procerus and three types of E. arundinaceus. Genet Resour Crop Evol 59:769–781. https://doi.org/10.1007/s10722-011-9717-2

    Article  Google Scholar 

  9. Berding N, Roach BT (1987) Germplasm collection, maintenance, and use. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 143–210. https://doi.org/10.1016/B978-0-444-42769-4.50009-6

    Chapter  Google Scholar 

  10. D’Hont A, Rao PS, Feldmann P, Grivet L, Islam-Faridi N, Taylor P, Glaszmann JC (1995) Identification and characterisation of sugarcane intergeneric hybrids, Saccharum officinarum × Erianthus arundinaceus, with molecular markers and DNA in situ hybridisation. Theor Appl Genet 91:320–326. https://doi.org/10.1007/BF00220894

    Article  PubMed  Google Scholar 

  11. Nagatomi S, Ohshiro Y, Nakasone S (1984) Expedition for sugarcane germplasm to the Ryukyu Islands: the first and second researches. Bull of the Okinawa Agric Exp Station 9: 1–27. (In Japanese with English summary)

  12. Nagatomi S, Sastrowijono S, Silverio GT, Pillado R, Sugimoto A, Ohshiro Y (1985) Expedition for sugarcane germplasm to the Ryukyu Islands: the third research. Bull of the Okinawa Agric Exp Station 10: 1–24. (In Japanese with English summary)

  13. Irei S, Fukuhara S, Terajima Y, Sakaigaichi T, Matsuoka M, Sugimoto A (2008) Exploration and collection of sugarcane wild species (Erianthus spp.) in Okinawa island. Annual Rep on Exploration and Introduction of Plant Genetic Resour 24: 47–53. (In Japanese with English summary)

  14. Ando S, Sugiura M, Yamada T, Katsuta M, Ishikawa S, Terajima Y, Sugimoto A, Matsuoka M (2011) Overwintering ability and dry matter production of sugarcane hybrids and relatives in the Kanto region in Japan. JARQ 45:259–267. https://doi.org/10.6090/jarq.45.259

    Article  Google Scholar 

  15. Matsunami H, Kobayashi M, Ando S, Terajima Y (2014a) Turnover of minerals and nonstructural carbohydrates in Erianthus arundinaceus (L.) Beauv. during winter in temperate Japan. Jpn J Grassl Sci 59:246–252. https://doi.org/10.14941/grass.59.246 (In Japanese with English summary)

    Article  Google Scholar 

  16. Matsunami H, Kobayashi M, Ando S, Terajima Y (2014b) Effect of cutting time and height on regrowth of Erianthus arundinaceus (L.) Beauv. after overwintering. Jpn J Grassl Sci 59:253–260. https://doi.org/10.14941/grass.59.253 (In Japanese with English summary)

    Article  Google Scholar 

  17. Matsunami H, Kobayashi M, Ando S, Terajima Y, Tsuruta S (2014c) Sources of nitrogen taken up by Erianthus arundinaceus (L.) Beauv. Jpn J Grassl Sci 60:97–101 https://doi.org/10.14941/grass.60.97 (In Japanese with English summary)

    Google Scholar 

  18. Matsunami H, Kobayashi M, Ando S, Terajima Y, Tsuruta S, Sato H (2016) Effect of planting density and fertilizer application level on dry matter yield of Erianthus arundinaceus (L.). Jpn J Grassl Sci 61:224–233 https://doi.org/10.14941/grass.61.224 (In Japanese with English summary)

    CAS  Google Scholar 

  19. Amalraj VA, Balasundaram N (2006) On the taxonomy of the members of ‘Saccharum complex’. Genet Resour Crop Evol 53:35–41. https://doi.org/10.1007/s10722-004-0581-1

    Article  Google Scholar 

  20. Fukuhara S, Terajima Y, Irei S, Sakaigaichi T, Ujihara K, Sugimoto A, Matsuoka M (2013) Identification and characterization of intergeneric hybrid of commercial sugarcane (Saccharum spp. hybrid) and Erianthus arundinaceus (Retz.). Euphytica 189:321–327. https://doi.org/10.1007/s10681-012-0748-3

    Article  Google Scholar 

  21. Clayton WD, Renvoize SA (1986) Genera graminum: grasses of the world. Kew Bulletin Additional Series 13:320–375

    Google Scholar 

  22. Hodkinson TR, Chase MW, Lledó MD, Salamin N, Renvoize SA (2002) Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J Plant Res 115:381–392. https://doi.org/10.1007/s10265-002-0049-3

    Article  PubMed  CAS  Google Scholar 

  23. Mukherjee SK (1957) Origin and distribution of Saccharum. Bot Gaz 119:55–61

    Article  Google Scholar 

  24. Besse P, McIntyre CL, Berding N (1997) Characterization of Erianthus sect. Ripidium and Saccharum germplasm (Andropogoneae-Saccharinae) using RFLP markers. Euphytica 93:283–292. https://doi.org/10.1023/A:1002940701171

    Article  CAS  Google Scholar 

  25. Besse P, Taylor G, Carroll B, Berding N, Burner D, McIntyre CL (1998) Assessing genetic diversity in a sugarcane germplasm collection using an automated AFLP analysis. Genetica 104:143–153. https://doi.org/10.1023/A:1003436403678

    Article  PubMed  CAS  Google Scholar 

  26. Raj P, Aelvi A, Prathima PT, Nair NV (2016) Analysis of genetic diversity of Saccharum complex using chloroplast microsatellite markers. Sugar Tech 18:141–148. https://doi.org/10.1007/s12355-015-0382-1

    Article  CAS  Google Scholar 

  27. Tsuruta S, Ebina M, Kobayashi M, Takahashi W (2017) Complete chloroplast genomes of Erianthus arundinaceus and Miscanthus sinensis: comparative genomics and evolution of the Saccharum complex. PLoS One 12(1):e0169992. https://doi.org/10.1371/journal.pone.0169992

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shimoda S, Suekawa O, Takemiya K, Hikari T, Atari K, Higo Y, Nagai M, Masakura K, Ujihara K, Sugimoto A (2000) Exploration for collecting wild relatives of sugarcane in Amami Islands, Kagoshima prefecture. Annual rep on exploration and introduction of plant. Genet Res 16:29–33

    Google Scholar 

  29. Tsuruta S, Ebina M, Kobayashi M, Hattori T, Terauchi T (2012) Analysis of genetic diversity in the bioenergy plant Erianthus arundinaceus (Poaceae: Andropogoneae) using amplified fragment length polymorphism markers. Grassl Sci 58:174–177. https://doi.org/10.1111/j.1744-697X.2012.00258.x

    Article  Google Scholar 

  30. Tsuruta S, Ebina M, Terajima Y, Kobayashi M, Takahashi W (2017) Genetic variability in Erianthus arundinaceus accessions native to Japan based on nuclear DNA content and simple sequence repeat markers. Acta Physiol Plant 39(220). https://doi.org/10.1007/s11738-017-2519-1

  31. Yan JJ, Zhang JB, Sun K, Chang D, Bai SQ, Shen XY, Huang L, Zhang J, Zhang Y, Dong Y (2016) Ploidy level and DNA content of Erianthus arundinaceus as determined by flow cytometry and the association with biological characteristics. PLoS One 11:e0151948. https://doi.org/10.1371/journal.pone.0151948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Woodard KR, Prine GM (1993) Dry matter accumulation of elephantgrass, energycane and elephantmillet in a subtropical climate. Crop Sci 33:818–824. https://doi.org/10.2135/cropsci1993.0011183X003300040038x

    Article  Google Scholar 

  33. Beale CV, Long SP (1997) Seasonal dynamics of nutrient accumulation and partitioning in the perennial C4-grasses Miscanthus × giganteus and Spartina cynosuroides. Biomass Bioenergy 12:419–428. https://doi.org/10.1016/S0961-9534(97)00016-0

    Article  Google Scholar 

  34. Himken M, Lammel J, Neukirchen D, Czypionka-Krause U, Olfs HW (1997) Cultivation of Miscanthus under West European conditions: seasonal changes in dry matter production, nutrient uptake and remobilization. Plant Soil 189:117–126. https://doi.org/10.1023/A:1004244614537

    Article  CAS  Google Scholar 

  35. Sugawara K, Isawa T (1974) Physiological studies on available carbohydrates in grasses 2. Available carbohydrate of orchard grass during winter and early spring. Jpn J Grassl Sci 20:199–204 https://doi.org/10.14941/grass.20.199 (In Japanese with English summary)

    CAS  Google Scholar 

  36. Tamura Y, Ishida R, Aota S, Watanabe Y (1985) Accumulation of nonstructural carbohydrates and snow endurance in Italian ryegrass (Lolium multiflorum Lam.). Bull Hokuriku Natl Agric Exp Stn 27:7–79 (In Japanese with English summary)

    Google Scholar 

  37. Tamura Y (1986) Storage of nonstructural carbohydrates and snow endurance in winter annual forage crops I. Storage of nonstructural carbohydrates in fall. Jpn J Grassl Sci 32:1–6 https://doi.org/10.14941/grass.32.1 (In Japanese with English summary)

    Google Scholar 

  38. Yukawa T, Watanabe Y, Yamamoto S (1994) Studies on fructan accumulation in wheat (Triticum aestivum L.) II. Changes in degree of polymerization of fructan under treatment at 1 °C in dark. Jpn J Crop Sci 63:430–435 https://doi.org/10.1626/jcs.63.430 (In Japanese with English summary)

    Article  CAS  Google Scholar 

  39. Kobayashi T, Nishimura S (1978) Winter hardiness and carbohydrate reserve of some tropical and subtropical grasses as affected by the final cutting date in autumn. Jpn J Grassl Sci 24:27–33. https://doi.org/10.14941/grass.24.27 (In Japanese with English summary)

    Article  Google Scholar 

  40. Numaguchi H (1983) Winter survival and low temperature stress of tropical grasses -particularly on the growth of dallisgrass during cold hardening and dehardening season. Bull Fac Agric Miyazaki Univ 30:167–242 (In Japanese with English summary)

    Google Scholar 

  41. Shiotsu F, Abe J, Ra H, Gau M, Morita S (2011) Root distribution of perennial energy crop Erianthus. Abstracts of the 7th International Symposium, Structure and Function of Roots: 160–161

  42. Shiotsu F, Abe J, Doi T, Gau M, Morita S (2015) Root morphology and anatomy of field-grown Erianthus arundinaceus. Am J Plant Sci 6:103–112. https://doi.org/10.4236/ajps.2015.61012

    Article  Google Scholar 

  43. Shibata S, Shimada T (1986) Winter hardiness of orchardgrass with reference to some chemical compositions in soil freezing area of Japan. I. Varietal difference among frost hardiness, winter soluble carbohydrates content, and resistance to sclerotinia snow blight disease. Jpn J Grassl Sci 32:102–108 https://doi.org/10.14941/grass.32.102 (In Japanese with English summary)

    Google Scholar 

  44. Yukawa T, Watanabe Y (1991) Studies on fructan accumulation in wheat (Triticum aestivum L.) I. Relationship between fructan concentration and overwintering ability from aspect on the pedigree. Jpn J Crop Sci 60:385–391. https://doi.org/10.1626/jcs.60.385 (In Japanese with English summary)

    Article  CAS  Google Scholar 

  45. Matsuo K, Chuenpreecha T, Matsumoto N, Ponragdee W (2002) Eco-physiological characteristics of Erianthus spp. and yielding abilities of three forages under condition of cattle feces application. JIRCAS Working Rep 30:187–194

    Google Scholar 

  46. Kato N, Hattori I, Uwatoko N, Gau M (2013) Crop management approaches to improve Erianthus biomass yield. J Jpn Inst Energy 92:577–582 (In Japanese with English summary)

    CAS  Google Scholar 

  47. Hadders G, Olsson R (1997) Harvest of grass for combustion in late summer and in spring. Biomass Bioenergy 12:171–175. https://doi.org/10.1016/S0961-9534(96)00047-5

    Article  Google Scholar 

  48. Landstrom S, Lomakka L (1996) Harvest in spring improves yield and quality of reed canary grass as a bioenergy crop. Biomass Bioenergy 11:333–341. https://doi.org/10.1016/0961-9534(96)00041-4

    Article  Google Scholar 

  49. Mislevy P, Martin FG, Adjei MB, Miller JD (1997) Harvest management effect on quantity and quality of Erianthus plant morphological component. Biomass Bioenergy 13:51–58. https://doi.org/10.1016/S0961-9534(97)00023-8

    Article  Google Scholar 

  50. Terajima Y, Matsuoka M, Irei S, Sakaigaichi T, Fukuhara S, Ujihara K, Ohara S, Sugimoto A (2007) Breeding for high biomass sugarcane and its utilization in Japan. Proc Int Soc Sugar Cane Technol (ISSCT) 26:759–763

    Google Scholar 

  51. Uwatoko N, Gau M (2013) Development of the Erianthus variety for the production of lignocellulosic biomass feedstocks. J Jpn Inst Energy 92:571–576 (In Japanese with English summary)

    CAS  Google Scholar 

  52. Hirashima T (1978) Studies on the management of permanent pastures in Konsen district in Hokkaido. Rep Hokkaido Prefectural Agric Exp Stn 27:1–97 (In Japanese with English summary)

    Google Scholar 

  53. Sakamoto N (1984) Studies on the management of orchardgrass sward in Tenpoku district (northern Hokkaido). Rep Hokkaido Prefectural Agric Exp Stn 48:1–58 (In Japanese with English summary)

    Google Scholar 

  54. Ishii Y, Ito K, Numaguchi H (1995) Effect of cutting date and cutting height before overwintering on the spring regrowth of summer-planted napiergrass (Pennisetum purpureum Schumach). Jpn J Grassl Sci 40:396–409. https://doi.org/10.14941/grass.40.396

    Article  Google Scholar 

  55. Schwarz H, Liebhard P, Ehrendorfer K, Ruckenbauer P (1994) The effect of fertilization on yield and quality of Miscanthus sinensis ‘Giganteus’. Ind Crop Prod 2:153–159. https://doi.org/10.1016/0926-6690(94)90031-0

    Article  Google Scholar 

  56. Ercoli L, Mariotti M, Mansoni A, Bonari E (1999) Effect of irrigation and nitrogen fertilization on biomass yield and efficiency of energy use in crop production of Miscanthus. Field Crops Res 63:3–11. https://doi.org/10.1016/S0378-4290(99)00022-2

    Article  Google Scholar 

  57. Reynolds JH, Walker CL, Kirchner MJ (2000) Nitrogen removal in switchgrass biomass under two harvest systems. Biomass Bioenergy 19:281–286. https://doi.org/10.1016/S0961-9534(00)00042-8

    Article  CAS  Google Scholar 

  58. Christian DG, Poulton PR, Riche AB, Yates NE, Todd AD (2006) The recovery over several seasons of 15N-labelled fertilizer applied to Miscanthus × giganteus ranging from 1 to 3 years old. Biomass Bioenergy 30:125–133. https://doi.org/10.1016/j.biombioe.2005.11.002

    Article  CAS  Google Scholar 

  59. Danalatos NG, Archontoulis SV, Mitsis I (2007) Potential growth and biomass productivity of Miscanthus × giganteus as affected by plant density and N-fertilization in central Greece. Biomass Bioenergy 31:145–152. https://doi.org/10.1016/j.biombioe.2006.07.004

    Article  Google Scholar 

  60. Christian DG, Riche AB, Yates NE (2008) Growth, yield and mineral content of Miscanthus × giganteus growth as a biofuel for 14 successive harvests. Ind Crop Prod 28:320–327. https://doi.org/10.1016/j.indcrop.2008.02.009

    Article  Google Scholar 

  61. Neukirchen D, Himken M, Lammel J, Czypionka-Krause U, Olfs HW (1999) Spatial and temporal distribution of the root system and root nutrient content of an established Miscanthus crop. Eur J Agron 11:301–309. https://doi.org/10.1016/S1161-0301(99)00031-3

    Article  Google Scholar 

  62. Hoshino M, Ono J, Sirikiratayanond N (1979) Dry matter production of tropical grasses and legumes and its seasonal change in Thailand. Jpn J Grassl Sci 24:310–317. https://doi.org/10.14941/grass.24.310

    Article  Google Scholar 

  63. Miyagi E (1981) Studies on the productivity and feeding value of napiergrass (Pennisetum purpureum Schumach): 1. The effect of nitrogen fertilizer on the yields of napiergrass. Jpn J Grassl Sci 27:216–226 https://doi.org/10.14941/grass.27.216 (In Japanese with English summary, tables and figures)

    Google Scholar 

  64. Nakagawa H, Sakai M, Harada T, Ichinose T, Takeno K, Matsumoto S, Kobayashi M, Matsumoto K, Yakushido K (2011) Biomethanol production from forage grasses, trees, and crop residues. In: Biofuel’s engineering process technology, (Ed Bernardes MADS), INTECH, Rijeka, Croatia, 715–732. https://doi.org/10.5772/18168

  65. Kobayashi M, Takeno K, Matsumoto K, Matsunami H, Tsuruta S, Ando S (2013) Cesium transfer to Gramineae biofuel crops grown in a field polluted by radioactive fallout and efficiency of trapping the cesium stable isotope in a small-scale model system for biomass gasification. Grassl Sci 59:173–181. https://doi.org/10.1111/grs.12024

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We extend our thanks to the sugarcane breeders in Japan, especially those at the Okinawa Prefectural Agricultural Research Center, who collected valuable genetic resources for Erianthus arundinaceus in subtropical and temperate zones in Japan. We also thank the technical staff of the NARO-ILGS Technical Support Center for carrying out the E. arundinaceus field experiments.

Funding

A part of this study was implemented as a research project funded by the New Energy and Industrial Technology Development Organization (Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsunami, H., Kobayashi, M., Tsuruta, Si. et al. Overwintering Ability and High-Yield Biomass Production of Erianthus arundinaceus in a Temperate Zone in Japan. Bioenerg. Res. 11, 467–479 (2018). https://doi.org/10.1007/s12155-018-9912-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-018-9912-5

Keywords

Navigation