Skip to main content

Advertisement

Log in

Potential for Marker-Assisted Simultaneous Improvement of Grain and Biomass Yield in Triticale

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Triticale is a promising crop for agricultural biomass production but breeding has until now mainly focused on grain yield. Here, we evaluated the potential of marker-assisted simultaneous improvement of grain yield and biomass yield. To this end, we employed a large triticale doubled haploid population with 647 individuals derived from four families that were phenotyped for grain yield and biomass yield, as well as thousand-kernel weight, tiller density, and plant height in multi-environment field trials. Employing an association mapping approach, we identified quantitative trait loci (QTL) for all the five traits. The phenotypic correlation between grain yield and biomass yield was low, and we detected only one overlapping QTL suggesting different genetic architectures underlying both traits. Our results indicate that a marker-based selection for either grain yield or biomass yield does not adversely affect the other traits. Furthermore, an improvement of the multiplicative yield traits can to some extent also be achieved by selection for QTL identified for the component traits. Taken together, our results suggest that marker-assisted breeding can assist the establishment of dual-purpose triticale cultivars with high grain and biomass yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pronyk C, Mazza G (2011) Optimization of processing conditions for the fractionation of triticale straw using pressurized low polarity water. Bioresour Technol 102:2016–2025

    Article  CAS  PubMed  Google Scholar 

  2. Royo C, Tribo F (1997) Triticale and barley for grain and for dual-purpose (forage + grain) in a Mediterranean-type environment. II. Yield, yield components and quality. Aust J Agric Res 48:423–432

    Article  Google Scholar 

  3. Lekgari LA, Baenziger PS, Vogel KP, Baltensperger DD (2008) Identifyping winter forage triticale (× Triticosecale Wittmack) strains for the central Great Plains. Crop Sci 48:2040–2048

    Article  Google Scholar 

  4. Bilgili U, Cifci EA, Hanoglu H, Yagdi K, Acikgoz E (2009) Yield and quality of triticale forage. J Food Agric Environ 7:556–560

    Google Scholar 

  5. Gowda M, Hahn V, Reif JC, Longin CFH, Alheit K, Maurer HP (2011) Potential for simultaneous improvement of grain and biomass yield in Central European winter triticale germplasm. Field Crops Res 121:153–157

    Article  Google Scholar 

  6. Busemeyer L, Ruckelshausen A, Möller K, Melchinger AE, Alheit KV, Maurer HP, Weissmann EA, Reif JC, Würschum T (2013a) Precision phenotyping of biomass accumulation in triticale reveals temporal genetic patterns of regulation. Sci Rep 3:2442

    Article  PubMed  PubMed Central  Google Scholar 

  7. Busemeyer L, Mentrup D, Möller K, Wunder E, Alheit K, Hahn V, Maurer HP, Reif JC, Würschum T, Müller J, Rahe F, Ruckelshausen A (2013b) Breedvision—a multi-sensor platform for non-destructive field-based phenotyping in plant breeding. Sensors (Switzerland) 13:2830–2847

    Article  Google Scholar 

  8. Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    Article  PubMed  PubMed Central  Google Scholar 

  9. Würschum T (2012) Mapping QTL for agronomic traits in breeding populations. Theor Appl Genet 125:201–210

    Article  PubMed  Google Scholar 

  10. Liu W, Reif JC, Ranc N, Porta GD, Würschum T (2012) Comparison of biometrical approaches for QTL detection in multiple segregating families. Theor Appl Genet 125:987–998

    Article  PubMed  Google Scholar 

  11. Alheit KV, Busemeyer L, Liu W, Maurer HP, Gowda M, Hahn V, Weissmann S, Ruckelshausen A, Reif JC, Würschum T (2014) Multiple-line cross QTL mapping for biomass yield and plant height in triticale (× Triticosecale Wittmack). Theor Appl Genet DOI 127:251–260

    Article  Google Scholar 

  12. Liu W, Gowda M, Reif JC, Hahn V, Ruckelshausen A, Weissmann EA, Maurer HP, Würschum T (2014) Genetic dynamics underlying phenotypic development of biomass yield in triticale. BMC Genomics 15:458

  13. Liu W, Leiser WL, Reif JC, Tucker MR, Losert D, Weissmann EA, Hahn V, Maurer HP, Würschum T (2016) Multiple-line cross QTL mapping for grain yield and thousand-kernel weight in triticale. Plant Breed 135:567–573

    Article  CAS  Google Scholar 

  14. Liu W, Maurer HP, Li G, Tucker MR, Gowda M, Weissmann EA, Hahn V, Würschum T (2014) Genetic architecture of winter hardiness and frost tolerance in triticale. PLoS One 9:e99848

  15. Liu W, Leiser WL, Maurer HP, Li J, Weissmann S, Hahn V, Würschum T (2015) Evaluation of genomic approaches for marker-based improvement of lodging tolerance in triticale. Plant Breed 134:416–422

    Article  Google Scholar 

  16. Würschum T, Liu W, Alheit KV, Tucker MR, Gowda M, Weissmann EA, Hahn V, Maurer HP (2014) Adult plant development in triticale (×Triticosecale Wittmack) is controlled by dynamic genetic patterns of regulation. G3 Genes Genomes Genetics 4:1585–1591

  17. Würschum T, Liu W, Busemeyer L, Tucker MR, Reif JC, Weissmann EA, Hahn V, Ruckelshausen A, Maurer HP (2014) Mapping dynamic QTL for plant height in triticale. BMC Genet 15:59

  18. Würschum T, Tucker MR, Reif JC, Maurer HP (2012) Improved efficiency of doubled haploid generation in hexaploid triticale by in vitro chromosome doubling. BMC Plant Biol 12:109

  19. Würschum T, Tucker MR, Maurer HP, Leiser WL (2015) Ethylene inhibitors improve efficiency of microspore embryogenesis in hexaploid triticale. Plant Cell Tiss Organ Cult 122:751–757

    Article  Google Scholar 

  20. Alheit KV, Reif JC, Maurer HP, Hahn V, Weissmann EA, Miedaner T, Würschum T (2011) Detection of segregation distortion loci in triticale (× Triticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map. BMC Genomics 12:380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Williams E, Piepho H-P, Whitaker D (2011) Augmented p-rep designs. Biom J 53:19–27

    Article  PubMed  Google Scholar 

  22. Lancashire PD, Bleiholder H, van Boom TD, Langelüddeke P, Stauss R, Weber E, Witzenberger A (1991) A uniform decimal code for growth stages of crops and weeds. Ann Appl Biol 119:561–601

    Article  Google Scholar 

  23. Cochran WG, Cox GM (1957) Experimental Designs. Wiley, New York

    Google Scholar 

  24. Melchinger AE, Utz HF, Schön CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and larger bias in estimates of QTL effects. Genetics 149:383–403

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gilmour AR, Gogel BG, Cullis BR, Thompson R (2009) ASReml user guide release 3.0. VSN International Ltd, Hemel Hempstead, HP1 1ES, UK

  26. Würschum T, Liu W, Gowda M, Maurer HP, Fischer S, Schechert A, Reif JC (2012) Comparison of biometrical models for joint linkage association mapping. Heredity 108:332–340

  27. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  28. SAS Institute (2008) SAS/STAT 9.2 User's guide., Cary NC

  29. Holm S (1979) A simple sequentially rejective Bonferroni test procedure. Scand J Stat 6:65–70

    Google Scholar 

  30. Liu W, Maurer HP, Reif JC, Melchinger AE, Utz HF, Tucker MR, Ranc N, Della Porta G, Würschum T (2013) Optimum design of family structure and allocation of resources in association mapping with lines from multiple crosses. Heredity 110:71–79

    Article  CAS  PubMed  Google Scholar 

  31. Würschum T, Kraft T (2014) Cross-validation in association mapping and its relevance for the estimation of QTL parameters of complex traits. Heredity 112:463–468

    Article  PubMed  Google Scholar 

  32. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860

    Article  CAS  PubMed  Google Scholar 

  33. Reif JC, Maurer HP, Korzun V, Ebmeyer E, Miedaner T, Würschum T (2011) Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theor Appl Genet 123:283–292

    Article  PubMed  Google Scholar 

  34. Miedaner T, Hübner M, Korzun V, Schmiedchen B, Bauer E, Haseneyer G, Wilde P, Reif JC (2012) Genetic architecture of complex agronomic traits examined in two testcross populations of rye (Secale cereal L.). BMC Genomics 13:706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Haffke S, Kusterer B, Fromme FJ, Roux S, Hackauf B, Miedaner T (2014) Analysis of covariation of grain yield and dry matter yield for breeding dual use hybrid rye. BioEnergy Research 7:424–429

    Article  Google Scholar 

  36. Reif JC, Gowda M, Maurer HP, Longin CFH, Korzun V, Ebmeyer E, Bothe R, Pietsch C, Würschum T (2011) Association mapping for quality traits in soft winter wheat. Theor Appl Genet 122:961–970

    Article  PubMed  Google Scholar 

  37. Würschum T, Langer SM, Longin CFH (2015) Genetic control of plant height in European winter wheat cultivars. Theor Appl Genet 128:865–874

    Article  PubMed  Google Scholar 

  38. Badea A, Eudes F, Salmon D, Tuvesson S, Vrolijk A, Larsson C-T, Caig V, Huttner E, Kilian A, Laroche A (2011) Development and assessment of DArT markers in triticale. Theor Appl Genet 122:1547–1560

    Article  CAS  PubMed  Google Scholar 

  39. Kalih R, Maurer HP, Hackauf B, Miedaner T (2014) Effect of a rye dwarfing gene on plant height, heading stage, and Fusarium head blight in triticale (× Triticosecale Wittmack). Theor Appl Genet 127:1527–1536

    Article  PubMed  Google Scholar 

  40. Stange M, Schrag TA, Utz HF, Riedelsheimer C, Bauer E, Melchinger AE (2013) High-density linkage mapping of yield components and epistatic interactions in maize with doubled haploid lines from four crosses. Mol Breeding 32:533–546

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the German Federal Ministry of Education and Research (BMBF) under the promotional reference 0315414. We acknowledge the handling of the funding by the Project Management Organization Jülich (PtJ). We thank Lucas Busemeyer, Katharina V. Alheit, Kim Möller, Agnes Rölfing-Finze, Hans Häge, Jacek Till, and Justus von Kittlitz for the outstanding work in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Würschum.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 422 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Maurer, H.P., Leiser, W.L. et al. Potential for Marker-Assisted Simultaneous Improvement of Grain and Biomass Yield in Triticale. Bioenerg. Res. 10, 449–455 (2017). https://doi.org/10.1007/s12155-016-9809-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-016-9809-0

Keywords

Navigation