Skip to main content
Log in

Generation of Octaploid Switchgrass by Seedling Treatment with Mitotic Inhibitors

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Switchgrass (Panicum virgatum L.) exists as multiple cytotypes with octaploid (8x) and tetraploid (4x) populations occupying distinct, overlapping ranges. These cytotypes tend to show differences in adaptation, yield potential, and other characters, but the specific result of whole-genome duplication is not clear and 8x and 4x switchgrass populations are reproductively isolated with limited genetic exchange. To create new opportunities for population improvement and to study the effects of whole genome duplication on switchgrass, seedling treatment of the tetraploid cultivar Liberty with microtubule inhibitors was used to generate an octaploid population. Resulting octaploids, tetraploids, and cytochimeras were resolved by intercrossing octaploid sectors to produce a population of 19 octaploid families. Fertility of octaploid sectors was significantly reduced relative to tetraploid sectors and caryopsis size significantly increased. Cell size was significantly increased which resulted in quantitative changes to leaf anatomy. During seedling and early vegetative growth stages, no differences in vigor or tillering ability were seen. This technique resulted in efficient genome doubling and was simple to perform. However, aneuploids were also identified with both larger and smaller than expected genome sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845. doi:10.1038/nature07190

    Article  CAS  PubMed  Google Scholar 

  2. Sanderson M, Adler P, Boateng A et al (2006) Switchgrass as a biofuels feedstock in the USA. Can J Plant Sci 86:1315–1325

    Article  Google Scholar 

  3. Sarath G, Mitchell R, Sattler S et al (2008) Opportunities and roadblocks in utilizing forages and small grains for liquid fuels. J Ind Microbiol Biotechnol 35:343–354

    Article  CAS  PubMed  Google Scholar 

  4. Vogel KP, Dien BS, Jung HG et al (2010) Quantifying actual and theoretical ethanol yields for switchgrass strains using NIRS analyses. BioEnergy Res 4:96–110. doi:10.1007/s12155-010-9104-4

    Article  Google Scholar 

  5. Hopkins A, Taliaferro C, Murphy C, Christian D (1996) Chromosome number and nuclear DNA content of several switchgrass populations. Crop Sci 36:1192–1195

    Article  Google Scholar 

  6. Hultquist S, Vogel K, Lee D et al (1996) Chloroplast DNA and nuclear DNA content variations among cultivars of switchgrass, Panicum virgatum L. Crop Sci 36:1049–1052

    Article  Google Scholar 

  7. Nielsen E (1944) Analysis of variation in Panicum virgatum. J Ag Res 69:327–353

    Google Scholar 

  8. Costich DE, Friebe B, Sheehan MJ et al (2010) Genome-size variation in Switchgrass (Panicum virgatum): flow cytometry and cytology reveal rampant aneuploidy. Plant Genome J 3:130. doi:10.3835/plantgenome2010.04.0010

    Article  Google Scholar 

  9. Triplett JK, Wang Y, Zhong J, Kellogg EA (2012) Five nuclear loci resolve the polyploid history of switchgrass (Panicum virgatum L.) and relatives. PLoS One 7

  10. Brunken J, Estes J (1975) Cytological variation in Panicum virgatum L. Southwest Nat 4:379–405

    Article  Google Scholar 

  11. Porter C (1966) An analysis of variation between upland and lowland Switchgrass, Panicum virgatum L., in Central Oklahoma. Ecology 47:980–992

    Article  Google Scholar 

  12. Warner DA, Ku MS, Edwards GE (1987) Photosynthesis, leaf anatomy, and cellular constituents in the polyploid C(4) grass Panicum virgatum. Plant Physiol 84:461–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang Y, Zalapa J, Jakubowski AR et al (2011) Natural hybrids and Gene flow between upland and lowland Switchgrass. Crop Sci 51:2626–2641

    Article  Google Scholar 

  14. Zalapa JE, Price DL, Kaeppler SM et al (2010) Hierarchical classification of switchgrass genotypes using SSR and chloroplast sequences: ecotypes, ploidies, gene pools, and cultivars. Theor Appl Genet 122:805–817. doi:10.1007/s00122-010-1488-1

    Article  PubMed  Google Scholar 

  15. Evans J, Crisovan E, Barry K et al (2015) Diversity and population structure of northern switchgrass as revealed through exome capture sequencing. Plant J 84:800–815. doi:10.1111/tpj.13041

    Article  CAS  PubMed  Google Scholar 

  16. Lu F, Lipka AE, Glaubitz J et al (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9:e1003215. doi:10.1371/journal.pgen.1003215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Winkler H (1916) Uber die experimentell Erzeugung von Pflanzen mit abweichenden Chromosomenzahlen. Zeitschr F Bot 8:417–531

    Google Scholar 

  18. Subrahmanyam NC, Kasha KJ (1975) Chromosome doubling of barley haploids by nitrous oxide and colchicine treatments. Can J Genet Cytol 17:573–583. doi:10.1139/g75-071

    Article  CAS  Google Scholar 

  19. Yang Z, Shen Z, Tetreault H et al (2013) Production of autopolyploid lowland Switchgrass lines through in vitro chromosome doubling. BioEnergy Res 7:232–242. doi:10.1007/s12155-013-9364-x

    Article  Google Scholar 

  20. King MJ, Bush LP, Buckner RC, Burrus PB (1987) Effect of ploidy on quality of tall fescue, Italian ryegrass × tall fescue and tall fescue × giant fescue hybrids. Ann Bot 60:127–132

    Article  Google Scholar 

  21. Vogel KP, Mitchell RB, Casler MD, Sarath G (2014) Registration of “liberty” Switchgrass. J Plant Regist 8:242. doi:10.3198/jpr2013.12.0076crc

    Article  Google Scholar 

  22. Arumuganathan K, Earle E (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:211–215

    Article  Google Scholar 

  23. Bennett MD, Bhandol P, Leitch IJ (2000) Nuclear DNA amounts in angiosperms and their modern uses—807 new estimates. Ann Bot 86:859–909

    Article  CAS  Google Scholar 

  24. Uozu S, Ikehashi H, Ohmido N et al (1997) Repetitive sequences: cause for variation in genome size and chromosome morphology in the genus Oryza. Plant Mol Biol 35:791–799

    Article  CAS  PubMed  Google Scholar 

  25. Cavalier-Smith T (1985) The evolution of genome size. John Wiley & Sons, London

    Google Scholar 

  26. Kirov I, Divashuk M, Van Laere K et al (2014) An easy “SteamDrop” method for high quality plant chromosome preparation. Mol Cytogenet 7:21. doi:10.1186/1755-8166-7-21

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chuck GS, Tobias C, Sun L et al (2011) Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. Proc Natl Acad Sci 108:17550–17555. doi:10.1073/pnas.1113971108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi:10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  29. Young HA, Hernlem BJ, Anderton AL et al (2010) Dihaploid stocks of Switchgrass isolated by a screening approach. BioEnergy Res 3:305–313. doi:10.1007/s12155-010-9081-7

    Article  Google Scholar 

  30. D’Amato F (1995) Aneusomaty in vivo and in vitro in higher plants. Caryologia 48:85–103. doi:10.1080/00087114.1995.10797320

    Article  Google Scholar 

  31. Das M, Taliaferro C (2009) Genetic variability and interrelationships of seed yield and yield components in switchgrass. Euphytica Neth J Plant Breed 167:95–105

    CAS  Google Scholar 

  32. Boe A (2007) Variation between two switchgrass cultivars for components of vegetative and seed biomass. Crop Sci 47:636–642

    Article  Google Scholar 

  33. Kneebone WR (1956) Breeding for seedling vigor in sand bluestem, Andropogon hallii hack., and other native grasses. Agron J 48:37–40

    Article  Google Scholar 

  34. Kneebone WR, Cremer CL (1955) The relationship of seed size to seedling vigor in some native grass Species1. Agron J 47:472. doi:10.2134/agronj1955.00021962004700100007x

    Article  Google Scholar 

  35. Rogler GA (1954) Seed size and seedling vigor in crested wheatgrass. Agron J 47:216–220. doi:10.2134/agronj1955.00021962004700100007x

    Article  Google Scholar 

  36. Boe A, Johnson PO (1987) Deriving a large-seeded Switchgrass population using air-column separation of parent Seed1. Crop Sci 27:147–148

    Article  Google Scholar 

  37. Aiken GE, Springer TL (1995) Seed size distribution, germination, and emergence of 6 Switchgrass cultivars. J Range Manag 48:455–458. doi:10.2307/4002252

    Article  Google Scholar 

  38. Boe A (2003) Genetic and environmental effects on seed weight and seed yield in Switchgrass. Crop Sci 43:63–67

    Article  Google Scholar 

  39. Blakeslee AF (1941) Effect of induced polyploidy in plants. Am Nat 75:117–135

    Article  Google Scholar 

  40. Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639. doi:10.1146/annurev.ecolysis.33.010802.150437

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Number DE-SC0008797. This work was also supported by the United States Department of Agriculture, Agricultural Research Service (USDA-ARS) Current Research Information System (CRIS) 2030-21000-023. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Mention of trade names or commercial products in this publication is solely for the purpose of specific information and does not imply recommendation or endorsement by the US Department of Agriculture. Thanks to Yoonsoo Han for assistance with flow cytometry and for care of plants in the greenhouse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian M . Tobias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, S., Aucar, S., Hernlem, B.J. et al. Generation of Octaploid Switchgrass by Seedling Treatment with Mitotic Inhibitors. Bioenerg. Res. 10, 344–352 (2017). https://doi.org/10.1007/s12155-016-9795-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-016-9795-2

Keywords

Navigation