Skip to main content
Log in

Optimization of Enzymatic Hydrolysis of Steam Pretreated Triticale Straw

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Efficient conversion of the carbohydrates into fermentable sugars is crucial for industrial implementation of 2G biofuels such as bioethanol. The main objective of this study was to improve the enzymatic hydrolysis of steam pretreated triticale straw (slurry, pressed-slurry or water insoluble solids (WIS)) by optimal combination of cellulase (Cellic® CTec2) and hemicellulase (Cellic® HTec2) and incubation period for a target glucan conversion of 80 %. Among the three substrates evaluated, pressed-slurry and WIS resulted in similar sugar yields but WIS presented lower enzyme requirements. Different combinations of cellulase and endo-xylanase could provide an 80 % of glucan conversion depending on the weight assigned to constrain. The selected enzyme combination, 0.1 mL Cellic®CTec2/g WIS and 0.2 mL Cellic®HTec2/g WIS, could achieve a glucan conversion of 80 % in 45 h (desirability of 0.9). Doubling the enzyme dosage could further improve the saccharification productivity by reducing the incubation period to 37 h. The optimisation of enzymatic hydrolysis of lignocellulosic substrates, to reduce the cost of sugars production, is a compromise between substrate, enzyme dosage, incubation time and the benchmark yield, although a more favourable response can be generated with an optimised combination of enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Manzanares P, Ballesteros I, Negro MJ, Oliva JM, González A, Ballesteros M (2012) Biological conversion of forage sorghum biomass to ethanol by steam explosion pretreatment and simultaneous hydrolysis and fermentation at high solid content. Biomass Conv Bioref 2:123–132

    Article  CAS  Google Scholar 

  2. Sánchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99(13):5270–5295

    Article  PubMed  Google Scholar 

  3. Sosulski K (1997) Preprocessed barley, rye, and triticale as a feedstock for an integrated fuel ethanol-feedlot plant. Appl Biochem Biotechnol 63–65:59–70

    Article  PubMed  Google Scholar 

  4. Mojovic L, Pejin D, Grujic O, Markov S, Pejin J, Rakin M et al (2009) Progress in the production of bioethanol on starch-based feedstocks. Chem Ind Chem Eng Q 15:211–226

    Article  CAS  Google Scholar 

  5. Larsen SU, Bruun S, Lindedam J (2012) Straw yield and saccharification potential for ethanol in cereal species and wheat cultivars. Biomass Bioenerg 45:239–250

    Article  CAS  Google Scholar 

  6. Kučerová J (2007) The effect of year, site and variety on the quality characteristics and bioethanol yield of winter triticale. J Inst Brew 113:142–146

    Article  Google Scholar 

  7. Oettler G (2005) The fortune of a botanical curiosity—Triticale: past, present and future. JAS 143:329–346

    Google Scholar 

  8. Erdei B, Barta Z, Sipos B, Réczey K, Galbe M, Zacchi G (2010) Ethanol production from mixtures of wheat straw and wheat meal. Biotechnol Biofuels 3:16

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kim Y, Mosier NS, Ladisch MR, Ramesh Pallapolu V, Lee YY, Garlock R et al (2011) Comparative study on enzymatic digestibility of switchgrass varieties and harvests processed by leading pretreatment technologies. Bioresour Technol 102:11089–11095

    Article  CAS  PubMed  Google Scholar 

  10. Lindedam J, Andersen SB, DeMartini J, Bruun S, Jørgensen H, Felby C et al (2012) Cultivar variation and selection potential relevant to the production of cellulosic ethanol from wheat straw. Biomass Bioenerg 37:221–228

    Article  CAS  Google Scholar 

  11. Torres AF, van der Weijde T, Dolstra O, Visser RGF, Trindade LM (2013) Effect of maize biomass composition on the optimization of dilute-acid pretreatments and enzymatic saccharification. Bioener Res 6:1038–1051

    Article  CAS  Google Scholar 

  12. Arantes V, Saddler JN (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuel 4:3

    Article  CAS  Google Scholar 

  13. Falls M, Shi J, Ebrik MA, Redmond T, Yang B, Wyman CE et al (2011) Investigation of enzyme formulation on pretreated switchgrass. Bioresour Technol 102:11072–11079

    Article  CAS  PubMed  Google Scholar 

  14. Zhang T, Wyman CE, Jakob K, Yang B (2012) Rapid selection and identification of Miscanthus genotypes with enhanced glucan and xylan yields from hydrothermal pretreatment followed by enzymatic hydrolysis. Biotechnol Biofuels 5:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ruiz E, Cara C, Manzanares P, Ballesteros M, Castro E (2008) Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks. Enzym Microb Technol 42:160–155

    Article  CAS  Google Scholar 

  16. Pengilly C, García-Aparicio MP, Diedericks D, Brienzo M, Görgens JF (2015) Enzymatic hydrolysis of steam-pretreated sweet sorghum bagasse by combinations of cellulase and endo-xylanase. Fuel 154:352–360

    Article  CAS  Google Scholar 

  17. Agudelo RA, García-Aparicio MP, Görgens JF (2016) Steam explosion pretreatment of triticale (× Triticosecale Wittmack) straw for sugar production. New Biotechnol 33(1):153–163

    Article  CAS  Google Scholar 

  18. Chen Y, Sharma-Shivappa RR, Keshwani D, Chen C (2007) Potential of agricultural residues and hay for bioethanol production. Appl Biochem Biotechnol 142(3):276–290

    Article  CAS  PubMed  Google Scholar 

  19. Kim JW, Mazza G (2008) Optimization of phosphoric acid catalyzed fractionation and enzymatic digestibility of flax shives. Ind Crop Prod 28(3):346–355

    Article  CAS  Google Scholar 

  20. Pronyk C, Mazza G (2011) Optimization of processing conditions for the fractionation of triticale straw using pressurized low polarity water. Bioresour Technol 102(2):2016–2025

    Article  CAS  PubMed  Google Scholar 

  21. Beauchet R, Berberi V, Corcos P-O, Guimont-Montpetit G, Dion Y, Eudes F, Lavoie J-M (2013) Fermentation of C6 carbohydrates from triticale straw hemicellulosic fraction as pretreatment for xylose purification. Ind Crop Prod 51:463–469

    Article  CAS  Google Scholar 

  22. Shao X, Lynd L (2013) Kinetic modeling of xylan hydrolysis in co- and countercurrent liquid hot water flow-through pretreatments. Bioresour Technol 130:117–124

    Article  CAS  PubMed  Google Scholar 

  23. Newman RH, Vaidya AA, Sohel MI, Jack MW (2013) Optimizing the enzyme loading and incubation time in enzymatic hydrolysis of lignocellulosic substrates. Bioresour Technol 21:1075–1080

    Google Scholar 

  24. Olsen C, Arantes V, Saddler J (2012) The use of predictive models to optimize sugar recovery obtained after the steam pre-treatment of softwoods. Biofuels Bioprod Biorefin 6(5):534–548

    Article  CAS  Google Scholar 

  25. Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, Sluiter J, Templeton D, Wolfe J (2008) NREL determination of total solids in biomass and total dissolved solids in liquid process samples, NREL/TP-510-42621. National Renewable Energy Laboratory, Golden

  26. Resch MG, Baker JO, Decker SR (2005) Low solids enzymatic saccharification of lignocellulosic biomass, NREL/TP P-5100-6335. National Renewable Energy Laboratory, Golden

  27. Kumar R, Wyman CE (2009) Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies. Biotechnol Bioeng 102(2):457–467

    Article  CAS  PubMed  Google Scholar 

  28. Benjamin Y, Cheng H, Görgens JF (2013) Evaluation of bagasse from different varieties of sugarcane by dilute acid pretreatment and enzymatic hydrolysis. Ind Crop Prod 51:7–18

    Article  CAS  Google Scholar 

  29. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268

    Article  CAS  Google Scholar 

  30. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Article  CAS  Google Scholar 

  31. Oberoi HS, Vadlani PV, Madl RL, Saida L, Abeykoon JP (2010) Ethanol production from orange peels: two-stage hydrolysis and fermentation studies using optimized parameters through experimental design. J Agric Food Chem 58:3422–3429

    Article  CAS  PubMed  Google Scholar 

  32. Sluiter A, Ruiz R, Scarlata C, Sluiter J, Tempelton D (2005) NREL determination of extractives in biomass, NREL/TP-510-42619. National Renewable Energy Laboratory, Golden

  33. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Tempelton D (2005) NREL determination of ash in biomass, NREL/TP-510-42622. National Renewable Energy Laboratory, Golden

  34. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Tempelton D, Crocker D (2011) NREL determination of structural carbohydrates and lignin in biomass, NREL/TP-510-42618. National Renewable Energy Laboratory, Golden

  35. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Tempelton D (2006) NREL determination of sugars, byproducts, and degradation products in liquid fraction process samples, NREL/TP-510-42623. National Renewable Energy Laboratory, Golden

  36. Ko JK, Um Y, Park Y-C, Seo J-H, Kim KH (2015) Compounds inhibiting the bioconversion of hydrothermally pretreated lignocellulose. Appl Microbiol Biotechnol 99(10):4201–4212

    Article  CAS  PubMed  Google Scholar 

  37. Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112

    Article  PubMed  Google Scholar 

  38. Leibbrandt NH, Knoetze JH, Görgens JF (2011) Comparing biological and thermochemical processing of sugarcane bagasse: an energy balance perspective. Biomass Bioenerg 35(5):2117–2124

    Article  CAS  Google Scholar 

  39. Sheng J, Agblevor FA (2008) Optimization of enzyme loading and hydrolytic time in the hydrolysis of cotton gin waste and recycled paper sludge for the maximum profit rate. Biochem Eng J 41:241–250

    Article  Google Scholar 

  40. Marcos M, García-Cubero MT, González-Benito G, Coca M, Bolado S, Lucas S (2013) Optimization of the enzymatic hydrolysis conditions of steam-exploded wheat straw for maximum glucose and xylose recovery. J Chem Technol Biotechnol 88(2):237–246

    Article  CAS  Google Scholar 

  41. Cantarella M, Cantarella L, Gallifuoco A, Spera A, Alfani F (2004) Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnol Prog 20:200–206

    Article  CAS  PubMed  Google Scholar 

  42. Kim Y, Ximenes E, Mosier NS, Ladisch MR (2011) Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzym Microb Technol 48(4-5):408–415

    Article  CAS  Google Scholar 

  43. Arora A, Martin EM, Pelkki MH, Carrier DJ (2013) Effect of formic acid and furfural on the enzymatic hydrolysis of cellulose powder and dilute acid-pretreated poplar hydrolysates. ACS Sustain Chem Eng 1(1):23–28

    Article  CAS  Google Scholar 

  44. Qing Q, Yang B, Wyman CE (2010) Xylo-oligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101(24):9624–9630

    Article  CAS  PubMed  Google Scholar 

  45. Kont R, Kurašin M, Teugjas H, Väljamäe P (2013) Strong cellulase inhibitors from the hydrothermal pretreatment of wheat straw. Biotechnol Biofuels 6:135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rodríguez-Zúñiga UF, Cannella D, Giordano RDC, Giordano RDLC, Jørgensen H, Felby C (2015) Lignocellulose pretreatment technologies affect the level of enzymatic cellulose oxidation by LPMO. Green Chem 17(5):2896–2903

    Article  Google Scholar 

  47. García-Aparicio MP, Ballesteros M, Manzanares P, Ballesteros I, González A, Negro JM (2007) Xylanase contribution to the efficiency of cellulose enzymatic hydrolysis of barley straw. Appl Biochem Biotechnol 137–140(1-12):353–365

    PubMed  Google Scholar 

  48. Hu J, Arantes V, Saddler JN (2011) The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol Biofuels 4:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kumar R, Wyman CE (2009) Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100:4203–4213

    Article  CAS  PubMed  Google Scholar 

  50. Walker JA, Takasuka TE, Deng K, Bianchetti CM, Udell HS, Prom BM et al (2015) Multifunctional cellulase catalysis targeted by fusion to different carbohydrate-binding modules. Biotechnol Biofuels 8(1):220

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jia L, Gonçalves GAL, Takasugi Y, Mori Y, Noda S, Tanaka T et al (2015) Effect of pretreatment methods on the synergism of cellulase and xylanase during the hydrolysis of bagasse. Bioresour Technol 185:158–164

    Article  CAS  PubMed  Google Scholar 

  52. Park HJ, Park SH (2010) Extension of central composite design for second-order response surface model building. Commun Stat-Theor M 39(7):1202–1211

    Article  Google Scholar 

  53. Gullón B, Yáñez R, Alonso JL, Parajó JC (2010) Production of oligosaccharides and sugars from rye straw: a kinetic approach. Bioresour Technol 101(17):6676–6684

    Article  PubMed  Google Scholar 

  54. Cannella D, Jørgensen H (2014) Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production? Biotechnol Bioeng 111(1):59–68

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr Roberto Agudelo and Mr Paul McInstoch are thanked for assisting with the steam explosion runs. The authors are thankful to The Technology Innovation Agency (TIA or the Agency), the Senior Chair of Energy Research (CoER), the National Reasearch Foundation (NRF) and Claude Leon Foundation for financial support. We extend our acknowledgment to Genencor and Novozymes for kindly supplying the enzyme preparations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. García-Aparicio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pengilly, C., García-Aparicio, M.P., Diedericks, D. et al. Optimization of Enzymatic Hydrolysis of Steam Pretreated Triticale Straw. Bioenerg. Res. 9, 851–863 (2016). https://doi.org/10.1007/s12155-016-9741-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-016-9741-3

Keywords

Navigation