Skip to main content
Log in

Acidic Ionic Liquid Catalyzed One-Pot Conversion of Cellulose to Ethyl Levulinate and Levulinic Acid in Ethanol-Water Solvent System

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Cellulose can be converted to a mixture of ethyl levulinate and levulinic acid by heating with a Brönsted acidic ionic liquid catalyst in aqueous ethanol medium in a one-pot operation under mild conditions. The highest ethyl levulinate yield of 19.0 % was obtained for a reaction carried out at 170 °C for 12 h in water-ethanol medium containing 38.5 % water and using 1-(1-propylsulfonic)-3-methylimidazolium chloride as the catalyst. The levulinic acid yields continue to increase with increasing water content up to about 54 % water in aqueous ethanol for reactions carried out at 150 °C for 48 h, and the highest levulinic acid yield was 23.7 %. The acidic, ionic liquid catalyst used can be efficiently recovered (96 %) from the water phase with negligible contamination, and the stability of the catalyst was confirmed by comparison of the 1H NMR spectrum of the recovered catalyst with fresh catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jarnefeld JL (2000) Production of levulinic acid and use as a platform chemical for derived products. Resourc Conserv Recycl 28(3–4):227–239

    Article  Google Scholar 

  2. Mascal M, Nikitin EB (2010) Comment on processes for the direct conversion of cellulose or cellulosic biomass into levulinate esters. ChemSusChem 3(12):1349–1351

    Article  CAS  PubMed  Google Scholar 

  3. Peng L, Lin L, Li H (2012) Extremely low sulfuric acid catalyst system for synthesis of methyl levulinate from glucose. Ind Crop Product 40:136–144

    Article  CAS  Google Scholar 

  4. Peng L, Lin L, Li H, Yang Q (2011) Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts. Appl Energ 88(12):4590–4596

    Article  CAS  Google Scholar 

  5. Saravanamurugan S, Riisager A (2012) Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono- and disaccharides. Catal Commun 17:71–75

    Article  CAS  Google Scholar 

  6. Fagan PJM, L.E (2006) Preparation of levulinic acid esters and formic acid esters from biomass and olefins. USA Patent US Patent 7153996

  7. Yan K, Wu G, Wen J, Chen A (2013) One-step synthesis of mesoporous H4SiW12O40-SiO2 catalysts for the production of methyl and ethyl levulinate biodiesel. Catal Commun 34:58–63

    Article  Google Scholar 

  8. Nandiwale KY, Sonar SK, Niphadkar PS, Joshi PN, Deshpande SS, Patil VS, Bokade VV (2013) Catalytic upgrading of renewable levulinic acid to ethyl levulinate biodiesel using dodecatungstophosphoric acid supported on desilicated H-ZSM-5 as catalyst. Appl Catal A: Gen 460–461:90–98

    Article  Google Scholar 

  9. Neves P, Lima S, Pillinger M, Rocha SM, Rocha J, Valente AA Conversion of furfuryl alcohol to ethyl levulinate using porous aluminosilicate acid catalysts. Catal Today 218-219:76-84

  10. Pasquale G, Vázquez P, Romanelli G, Baronetti G (2012) Catalytic upgrading of levulinic acid to ethyl levulinate using reusable silica-included Wells-Dawson heteropolyacid as catalyst. Catal Commun 18:115–120

    Article  CAS  Google Scholar 

  11. Christensen E, Williams A, Paul S, Burton S, McCormick RL (2011) Properties and performance of levulinate esters as diesel blend components. Energ Fuel 25(11):5422–5428

    Article  CAS  Google Scholar 

  12. Christensen E, Yanowitz J, Ratcliff M, McCormick RL (2011) Renewable oxygenate blending effects on gasoline properties. Energ Fuel 25(10):4723–4733

    Article  CAS  Google Scholar 

  13. Yanowitz J, McCormick RL (2009) Effect of biodiesel blends on North American heavy-duty diesel engine emissions. Europ J Lipid Sci Technol 111(8):763–772

    Article  CAS  Google Scholar 

  14. Janssen A, Pischinger S, Muether M (2010) Potential of cellulose-derived biofuels for soot free diesel combustion. SAE Technical Papers 1:70–84

    Google Scholar 

  15. Joshi H, Moser BR, Toler J, Smith WF, Walker T (2011) Ethyl levulinate: a potential bio-based diluent for biodiesel which improves cold flow properties. Biomass Bioenerg 35(7):3262–3266

    Article  CAS  Google Scholar 

  16. Amarasekara AS, Owereh OS (2009) Hydrolysis and decomposition of cellulose in Brönsted acidic ionic liquids under mild conditions. Ind Eng Chem Res 48(22):10152–10155

    Article  CAS  Google Scholar 

  17. Jiang F, Zhu Q, Ma D, Liu X, Han X (2011) Direct conversion and NMR observation of cellulose to glucose and 5-hydroxymethylfurfural (HMF) catalyzed by the acidic ionic liquids. J Molecul Catal A: Chem 334(1–2):8–12

    Article  CAS  Google Scholar 

  18. Tao F, Song H, Chou L (2011) Dehydration of fructose into 5-hydroxymethylfurfural in acidic ionic liquids. RSC Adv 1(4):672–676

    Article  CAS  Google Scholar 

  19. Gui J, Cong X, Liu D, Zhang X, Hu Z, Sun Z (2004) Novel Brønsted acidic ionic liquid as efficient and reusable catalyst system for esterification. Catal Commun 5(9):473–477

    Article  CAS  Google Scholar 

  20. Yang Q, Wei Z, Xing H, Ren Q (2008) Brönsted acidic ionic liquids as novel catalysts for the hydrolyzation of soybean isoflavone glycosides. Catal Commun 9(6):1307–1311

    Article  CAS  Google Scholar 

  21. Amarasekara AS, Wiredu B (2011) Degradation of cellulose in dilute aqueous solutions of acidic ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride, and p-toluenesulfonic acid at moderate temperatures and pressures. Ind Eng Chem Res 50(21):12276–12280

    Article  CAS  Google Scholar 

  22. Amarasekara AS, Williams LD, Ebede CC (2008) Mechanism of the dehydration of d-fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150 °C: an NMR study. Carbohyd Res 343(18):3021–3024

    Article  CAS  Google Scholar 

  23. Amarasekara AS, Owereh OS (2011) Thermal properties of sulfonic acid group functionalized Brönsted acidic ionic liquids. J Therm Anal Calorim 103(3):1027–1030

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the American Chemical Society-PRF grant UR1-49436, NSF grants CBET-0929970, CBET-1336469, HRD-1036593, and USDA grant CBG-2010-38821-21569 for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananda S. Amarasekara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amarasekara, A.S., Wiredu, B. Acidic Ionic Liquid Catalyzed One-Pot Conversion of Cellulose to Ethyl Levulinate and Levulinic Acid in Ethanol-Water Solvent System. Bioenerg. Res. 7, 1237–1243 (2014). https://doi.org/10.1007/s12155-014-9459-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9459-z

Keywords

Navigation