Skip to main content

Advertisement

Log in

Autohydrolysis Pretreatment of Mixed Softwood to Produce Value Prior to Combustion

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Autohydrolysis is a hot water pretreatment to extract soluble components from wood that can be used prior to converting the woody residuals into paper, wood products, fuel, or other goods. In this study, mixed softwood chips were autohydrolyzed in hot water at 150, 160, 170, and 180 °C for 1 and 2 h residence times. The objective was to understand the tradeoff between the extraction of fermentable sugar and the residual solid total energy of combustion quantitatively. This process strategy will be referred to as “value prior to combustion”. High-performance liquid chromatography was used to determine chemical compositions (sugars and byproducts such as acetic acid, furfural, and hydroxymethylfurfural) of the extracted liquid and residuals; a bomb calorimeter was used to measure the heating value of original wood and solid residue. As the autohydrolysis temperature increased, material balances of the system indicated higher volatile byproducts loss. More hemicelluloses were solubilized by the hot water extraction process at higher temperatures and longer residence times, and a greater degree of sugar degradation was also observed. The maximum sugar yield was determined to occur at conditions of 170 °C for 2 h, during which 13 g of sugar was recovered from the extract out of 100 g of oven-dried wood. The heating value of the solid residues after extraction was greater than the original wood. The total energy content of the solid residual after extraction ranged from 85 to 98 % of the original energy content of the feed with higher temperatures reducing the total energy content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gonzalez R, Daystar J, Jett M, Treasure T, Jameel H, Venditti R et al (2011) Economics of cellulosic ethanol production in a thermochemical pathway for softwood, hardwood, corn stover and switchgrass. Fuel Process Technol 94:113–122

    Article  Google Scholar 

  2. Stöcker M (2008) Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem Int Ed 47:9200–9211

    Article  Google Scholar 

  3. Tunc MS, Lawoko M, van Heiningen A (2010) Understanding the limitations of removal of hemicelluloses during autohydrolysis of a mixture of southern hardwoods. Bioresources 5:356–371

    CAS  Google Scholar 

  4. Westbye P, Köhnke T, Gatenholm P (2008) Fractionation and characterization of xylan rich extracts from birch. Holzforschung 62:31–37

    Article  CAS  Google Scholar 

  5. Ragauskas A, Williams C, Davison B, Britovsek G, Cairney J, Eckert C et al (2006) The path forward for biofuels and biomaterials. Science 311:484

    Article  PubMed  CAS  Google Scholar 

  6. Willför S, Sundberg A, Hemming J, Holmbom B (2005) Polysaccharides in some industrially important softwood species. Wood Sci Technol 39:245–257

    Article  Google Scholar 

  7. Willför S, Sundberg K, Tenkanen M, Holmbom B (2008) Spruce-derived mannans—a potential raw material for hydrocolloids and novel advanced natural materials. Carbohydr Polym 72:197–210

    Article  Google Scholar 

  8. Amidon T, Wood C, Shupe A, Wang Y, Graves M, Liu S (2008) Biorefinery: conversion of woody biomass to chemicals, energy and materials. J Biobased Mater Bioenergy 2:100–120

    Article  Google Scholar 

  9. Li H, Saeed A, Jahan MS, Ni Y, van Heiningen A (2010) Hemicellulose removal from hardwood chips in the pre-hydrolysis step of the kraft-based dissolving pulp production process. J Wood Chem Technol 30:48–60

    Article  CAS  Google Scholar 

  10. Li J, Henriksson G, Gellerstedt G (2005) Carbohydrate reactions during high-temperature steam treatment of aspen wood. Appl Biochem Biotechnol 125:175–188

    Article  PubMed  CAS  Google Scholar 

  11. Salam A, Venditti R, Pawlak J, El-Tahlawy K (2011) Crosslinked hemicellulose citrate-chitosan aerogel foams. Carbohydr Polym 84:1221–1229

    Article  CAS  Google Scholar 

  12. Rughani J, McGinnis GD (1989) Combined rapid–steam hydrolysis and organosolv pretreatment of mixed southern hardwoods. Biotechnol Bioeng 33:681–686

    Article  PubMed  CAS  Google Scholar 

  13. Leschinsky M, Sixta H, Patt R (2009) Detailed mass balances of the autohydrolysis of Eucalyptus globulus at 170 °C. Bioresources 4:687–703

    CAS  Google Scholar 

  14. Taherzadeh M, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Article  PubMed  CAS  Google Scholar 

  15. Hess J, Wright C, Kenney K (2007) Cellulosic biomass feedstocks and logistics for ethanol production. Biofuels, Bioprod Biorefin 1:181–190

    Article  CAS  Google Scholar 

  16. Stoutenburg R, Perrotta J, Amidon T, Nakas J (2008) Ethanol production from a membrane purified hemicellulosic hydrolysate derived from sugar maple by Pichia stipitis NRRL Y-7124. Bioresources 3:1349–1358

    CAS  Google Scholar 

  17. Liu S, Amidon T, Francis R, Ramarao B, Lai Y, Scott G (2006) From forest biomass to chemicals and energy… Biorefinery initiative in New York State. Ind Biotechnol 2:113–120

    Article  CAS  Google Scholar 

  18. Lundqvist J, Jacobs A, Palm M, Zacchi G, Dahlman O, Stalbrand H (2003) Characterization of galactoglucomannan extracted from spruce (Picea abies) by heat-fractionation at different conditions. Carbohydr Polym 51:203–211

    Article  CAS  Google Scholar 

  19. Amidon T, Liu S (2009) Water-based woody biorefinery. Biotechnol Adv 27:542–550

    Article  PubMed  CAS  Google Scholar 

  20. Caparrós S, Díaz M, Ariza J, López F, Jiménez L (2008) New perspectives for Paulownia fortunei L. valorisation of the autohydrolysis and pulping processes. Bioresour Technol 99:741–749

    Article  PubMed  Google Scholar 

  21. Lavoie JM, Capek-Menard E, Gauvin H, Chornet E (2010) Production of pulp from Salix viminalis energy crops using the FIRSST process. Bioresour Technol 101:4940–4946

    Article  PubMed  CAS  Google Scholar 

  22. San Martin R, Perez C, Briones R (1995) Simultaneous production of ethanol and kraft pulp from pine (Pinus radiata) using steam explosion. Bioresour Technol 53:217–223

    CAS  Google Scholar 

  23. Ligero P, van der Kolk JC, de Vega A, van Dam JEG (2011) Production of xylo-oligosaccharides from Miscanthus × Giganteus by autohydrolysis. Bioresources 6

  24. Zhang J, Zhu Z, Wang X, Wang N, Wang W, Bao J (2010) Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN 1, and the consequent ethanol fermentation. Biotechnol Biofuels 3:26–26

    Article  PubMed  Google Scholar 

  25. Garrote G, Cruz JM, Domínguez H, Parajó JC (2003) Valorisation of waste fractions from autohydrolysis of selected lignocellulosic materials. J Chem Technol Biotechnol 78:392–398

    Article  CAS  Google Scholar 

  26. Garrote G, Dominguez H, Parajó JC (1999) Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharide production from wood. J Chem Technol Biotechnol 74:1101–1109

    Article  CAS  Google Scholar 

  27. Garrote G, Domı́nguez H, Parajo JC (2001) Kinetic modelling of corncob autohydrolysis. Process Biochem 36:571–578

    Article  CAS  Google Scholar 

  28. Garrote G, Domı́nguez H, Parajó JC (2001) Generation of xylose solutions from Eucalyptus globulus wood by autohydrolysis–posthydrolysis processes: posthydrolysis kinetics. Bioresour Technol 79:155–164

    Article  PubMed  CAS  Google Scholar 

  29. Garrote G, Parajó J (2002) Non-isothermal autohydrolysis of Eucalyptus wood. Wood Sci Technol 36:111–123

    Article  CAS  Google Scholar 

  30. Tunc MS, van Heiningen ARP (2008) Hemicellulose extraction of mixed southern hardwood with water at 150 °C: effect of time. Ind Eng Chem Res 47:7031–7037

    Article  CAS  Google Scholar 

  31. FitzPatrick M, Champagne P, Cunningham M, Whitney R (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101:8915–8922

    Article  PubMed  CAS  Google Scholar 

  32. Vila C, Romero J, Francisco J, Garrote G, Parajó J (2011) Extracting value from Eucalyptus wood before kraft pulping: effects of hemicelluloses solubilization on pulp properties. Bioresour Technol 102(8):5251–5254

    Article  PubMed  CAS  Google Scholar 

  33. Pu Y, Treasure T, Gonzalez R, Venditti R, Jameel H (2011) Autohydrolysis pretreatment of mixed hardwoods to extract value prior to combustion. Bioresources 6

  34. Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628

    Article  PubMed  CAS  Google Scholar 

  35. Andersson A, Persson T, Zacchi G, Stålbrand H, Jönsson A (2007) Comparison of diafiltration and size-exclusion chromatography to recover hemicelluloses from process water from thermomechanical pulping of spruce. Appl Biochem Biotecnol 136:971–983

    Article  Google Scholar 

  36. Persson T, Nordin A, Zacchi G, Jönsson A (2007) Economic evaluation of isolation of hemicelluloses from process streams from thermomechanical pulping of spruce. Appl Biochem Biotecnol 136:741–752

    Article  Google Scholar 

  37. Pettersen R (1991) Wood sugar analysis by anion chromatography. J Wood Chem Technol 11:495–501

    Article  CAS  Google Scholar 

  38. Mills TY, Sandoval NR, Gill RT (2009) Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels 2

  39. Yu J, Savage PE (1998) Decomposition of formic acid under hydrothermal conditions. Ind Eng Chem Res 37:2–10

    Article  CAS  Google Scholar 

  40. Bjerre AB, Soerensen E (1992) Thermal decomposition of dilute aqueous formic acid solutions. Ind Eng Chem Res 31:1574–1577

    Article  CAS  Google Scholar 

  41. McCarty J, Falconer J, Madix RJ (1973) Decomposition of formic acid on Ni (110): I. Flash decomposition from the clean surface and flash desorption of reaction products. J Catal 30:235–249

    Article  CAS  Google Scholar 

  42. Treasure T, Gonzalez R, Venditti R, Pu Y, Jameel H, Kelley S et al (2012) Co-production of electricity and ethanol, economics of value prior combustion. Energy Conv Manage 62:141–153

    Article  CAS  Google Scholar 

  43. Thipse S, Sheng C, Booty M, Magee R, Bozzelli J (2002) Chemical makeup and physical characterization of a synthetic fuel and methods of heat content evaluation for studies on MSW incineration. Fuel 81:211–217

    Article  CAS  Google Scholar 

  44. White R (1987) Effect of lignin content and extractives on the higher heating value of wood. Wood Fiber Sci 19:446–452

    CAS  Google Scholar 

  45. Demirba A (2001) Relationships between lignin contents and heating values of biomass. Energy Convers Manag 42:183–188

    Article  Google Scholar 

  46. Demirba A (2002) Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor Exploitation 20:105–111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Venditti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pu, Y., Treasure, T., Gonzalez, R. et al. Autohydrolysis Pretreatment of Mixed Softwood to Produce Value Prior to Combustion. Bioenerg. Res. 6, 1094–1103 (2013). https://doi.org/10.1007/s12155-013-9343-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-013-9343-2

Keywords

Navigation