Skip to main content
Log in

Overview of the Oldest Existing Set of Substrate-optimized Anaerobic Processes: Digestive Tracts

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Over millions of years, living organisms have explored and optimized the digestion of a wide variety of substrates. Engineers who develop anaerobic digestion processes for waste treatment and energy production can learn much from this accumulated ‘experience’. The aim of this work is a survey based on the comparison of 190 digestive tracts (vertebrate and insect) considered as ‘reactors’ and their anaerobic processes. Within a digestive tract, each organ is modeled as a type of reactor (continuous stirred-tank, such reactors in series, plug-flow or batch) associated with chemical aspects such as pH or enzymes. Based on this analysis, each complete digestion process has been rebuilt and classified in accordance with basic structures which take into account the relative size of the different reactors. The results show that all animal digestive structures can be grouped within four basic types. Size and/or position in the structure of the different reactors (pre/post treatment and anaerobic microbial digestion) are closely correlated to the degradability of the feed (substrate). Major common features are: (i) grinding, (ii) an extreme pH compartment, and (iii) correlation between the size of the microbial compartment and the degradability of the feed. Thus, shared answers found by animals during their evolution can be a source of inspiration for engineers in designing optimal anaerobic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Deublein D, Steinhauser A (2008) Biogas from Waste and Renewable Resources. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Bayane A, Guiot SR (2011) Animal digestive strategies versus anaerobic digestion bioprocesses for biogas production from lignocellulosic biomass. Rev Environ Sci Biotechnol 10:43–62

    Article  CAS  Google Scholar 

  3. Weimer PJ, Russell JB, Muck RE (2009) Lessons from the cow: what the ruminant animal can teach us about consolidated bioprocessing of cellulosic biomass. Bioresour Technol 100:5323–5331

    Article  PubMed  CAS  Google Scholar 

  4. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    Article  PubMed  CAS  Google Scholar 

  5. Brune A (1998) Termite guts : the world’s smallest bioreactors. Trends Biotechnol 16:16–21

    Article  CAS  Google Scholar 

  6. Caton JM, Hume ID (2000) Chemical reactors of the mammalian gastro-intestinal tract. J Mamm Biol 65:33–50

    Google Scholar 

  7. Levenspiel O (1972) Chemical Reaction Engineering, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  8. Novick A, Szilard L (1950) Description of the chemostat. Science 112:715–716

    Article  PubMed  CAS  Google Scholar 

  9. Monod J (1950) La technique de la culture continue: théorie et applications. Ann Inst Pasteur 79:390–410

    CAS  Google Scholar 

  10. Klasing KC (1999) Avian gastrointestinal anatomy and physiology. Sem Avian Exotic Pet Med 8:42–50

    Article  Google Scholar 

  11. Bartz SH, Holldobler B (1982) Colony founding in myrmecocystus-mimicus wheeler (hymenoptera, formicidae) and the evolution of foundress-associations. Behav Ecol Sociobiol 10:137–147

    Article  Google Scholar 

  12. Stevens CE, Hume ID (1995) Comparative physiology of the vertebrate digestive system. Cambridge University Press, Cambridge

    Google Scholar 

  13. Terra WR (1990) Evolution of digestive systems of insects. Annu Rev Entomol 35:181–200

    Article  Google Scholar 

  14. Huang S-W, Zhang H-Y, Marshall S, Jackson TA (2010) The scarab gut: A potential bioreactor for bio-fuel production. Insect Sci 17:175–183

    Article  CAS  Google Scholar 

  15. Brune A, Kuhl M (1996) pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes. J Insect Physiol 42:1121–1127

    Article  CAS  Google Scholar 

  16. Monlau F, Barakat A, Trably E, Dumas C, Steyer J-P, Carrere H (2013) Lignocellulosic materials into biohydrogen and biomethane: impact of structural features and pretreatment. Crit Rev Environ Sci Technol 43:260–322

    Article  CAS  Google Scholar 

  17. Stevens CE, Hume ID (1998) Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiol Rev 78:393–427

    PubMed  CAS  Google Scholar 

  18. Kock KH (2005) Antarctic icefishes (Channichthyidae): a unique family of fishes. A review, Part I. Polar Biol 28:862–895

    Article  Google Scholar 

  19. Gehring WJ, Wehner R (1995) Heat-shock protein-synthesis and thermotolerance in cataglyphis, an ant from the Sahara Desert. PNAS 92:2994–2998

    Article  PubMed  CAS  Google Scholar 

  20. Giordano D, Russo R, Di Prisco G, Verde C (2012) Molecular adaptations in Antarctic fish and marine microorganisms. Mar Genomics 6:1–6

    Article  PubMed  Google Scholar 

  21. Freckleton RP, Harvey PH, Pagel M (2003) Bergmann’s rule and body size in mammals. Am Nat 161:821–825

    Article  PubMed  Google Scholar 

  22. Morgavi DP, Sakurada M, Tomita Y, Onodera R (1994) Presence in rumen bacterial and protozoal populations of enzymes capable of degrading fungal cell-walls. Microbiology 140:631–636

    Article  PubMed  CAS  Google Scholar 

  23. Scharf ME, Karl ZJ, Sethi A, Boucias DG (2011) Multiple levels of synergistic collaboration in termite lignocellulose digestion. PLOS One 6:e21709

    Article  PubMed  CAS  Google Scholar 

  24. Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A (2007) The delayed rise of present-day mammals. Nature 446:507–512

    Article  PubMed  CAS  Google Scholar 

  25. Angel CR (1996) A review of ratite nutrition. Anim Feed Sci Technol 60:241–246

    Article  Google Scholar 

  26. Martensson PE, Nordoy ES, Blix AS (1994) Digestibility of krill (euphausia-superba and thysanoessa sp) in minke whales (balaenoptera-acutorostrata) and crab-eater seals (lobodon carcinophagus). Br J Nutr 72:713–716

    Article  PubMed  CAS  Google Scholar 

  27. Inward DJG, Vogler AP, Eggleton P (2007) A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol Phylogenet Evol 44:953–967

    Article  PubMed  CAS  Google Scholar 

  28. Hirakawa HIR (2001) Coprophagy in leporids and other mammalian herbivores. Mamm Rev 31:61–80

    Article  Google Scholar 

  29. Daly H, Doyen J, Ehrlich P (1981) Introduction to insect biology and diversity. McGraw-Hill Kogakusha, Tokyo, p 564

    Google Scholar 

  30. Sakaguchi E (2003) Digestive strategies of small hindgut fermenters. Anim Sci J 74:327–337

    Article  Google Scholar 

  31. Flatt WP (2002) Animal needs and uses (comparative nutrition). In: Berdanier CD (ed) Handbook of nutrition and food. CRC Press, Boca Raton, pp 163–172

    Google Scholar 

  32. Brauman A (2000) Effect of gut transit and mound deposit on soil organic matter transformations in the soil feeding termite: a review. Eur J Soil Biol 36:117–125

    Article  Google Scholar 

  33. Vo TL, Mueller UG, Mikheyev AS (2009) Free-living fungal symbionts (Lepiotaceae) of fungus-growing ants (Attini: Formicidae). Mycologia 101:206–210

    Article  PubMed  CAS  Google Scholar 

  34. Farrell BD, Sequeira AS, O’Meara BC, Normark BB, Chung JH, Jordal BH (2001) The evolution of agriculture in beetles (Curculionidae : Scolytinae and Platypodinae). Evolution 55:2011–2027

    PubMed  CAS  Google Scholar 

  35. Terra WR, Ferreira C (1994) Insect digestive enzymes — properties, compartmentalization and function. Comp Biochem Physiol B 109:1–62

    Article  Google Scholar 

  36. Smith HF, Fisher RE, Everett ML, Thomas AD, Bollinger RR, Parker W (2009) Comparative anatomy and phylogenetic distribution of the mammalian cecal appendix. J Evol Biol 22:1984–1999

    Article  PubMed  CAS  Google Scholar 

  37. Randal Bollinger R, Barbas AS, Bush EL, Lin SS, Parker W (2007) Biofilms in the large bowel suggest an apparent function of the human vermiform appendix. J Theor Biol 249:826–831

    Article  PubMed  CAS  Google Scholar 

  38. Clauss M, Schwarm A, Ortmann S, Streich WJ, Hummel J (2007) A case of non-scaling in mammalian physiology? Body size, digestive capacity, food intake, and ingesta passage in mammalian herbivores. Comp Biochem Physiol A 148:249–265

    Article  Google Scholar 

  39. Krockenberger AK, Hume ID (2007) A flexible digestive strategy accommodates the nutritional demands of reproduction in a free-living folivore, the koala (Phascolarctos cinereus). Funct Ecol 21:748–756

    Article  Google Scholar 

  40. Schaller GB, Hu JH, Pan WS, Zhu J (1985) The giant pandas of Wolong. Science 228:875–876

    Article  Google Scholar 

  41. Tracy RL, Walsberg GE (2001) Developmental and acclimatory contributions to water loss in a desert rodent: investigating the time course of adaptive change. J Comp Physiol B 171:669–679

    Article  PubMed  CAS  Google Scholar 

  42. Abbassi-Guendouz A, Brockmann D, Trably E, Dumas C, Delgenes J-P, Steyer J-P, Escudie R (2012) Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresour Technol 111:55–61

    Article  PubMed  CAS  Google Scholar 

  43. Karthikeyan O, Visvanathan C (2012) Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review. Rev Environ Sci Biotechnol

  44. Snipes R, Kriete A (1991) Quantitative investigation of the area and volume in different compartments of the intestine of 18 mammalian species. J Mamm Biol 56:225–244

    Google Scholar 

  45. Clauss M, Hummel J (2005) The digestive performance of mammalian herbivores : why big may not be that much better. Mammal Rev 35:174–187

    Article  Google Scholar 

  46. Smith K, McCoy KD, Macpherson AJ (2007) Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol 19:59–69

    Article  PubMed  CAS  Google Scholar 

  47. Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Doré J (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807

    PubMed  CAS  Google Scholar 

  48. Shepherd ML, Swecker WS, Jensen RV, Ponder MA (2012) Characterization of the fecal bacteria communities of forage-fed horses by pyrosequencing of 16S rRNA V4 gene amplicons. FEMS Microbiol Lett 326:62–68

    Article  PubMed  CAS  Google Scholar 

  49. Monteils V, Cauquil L, Combes S, Godon J-J, Gidenne T (2008) Potential core species and satellite species in the bacterial community within the rabbit caecum. FEMS Microbiol Ecol 66:620–629

    Article  PubMed  CAS  Google Scholar 

  50. Kim M, Morrison M, Yu Z (2011) Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol Ecol 76:49–63

    Article  PubMed  CAS  Google Scholar 

  51. Wei G, Lu H, Zhou Z, Xie H, Wang A, Nelson K, Zhao L (2007) The microbial community in the feces of the giant panda (Ailuropoda melanoleuca) as determined by PCR-TGGE profiling and clone library analysis. Microb Ecol 54:194–202

    Article  PubMed  CAS  Google Scholar 

  52. Hongoh Y, Ohkuma M, Kudo T (2003) Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol Ecol 44:231–242

    Article  PubMed  CAS  Google Scholar 

  53. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  PubMed  CAS  Google Scholar 

  54. Zoetendal E, Akkermans A, De Vos W (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64:3854–3859

    PubMed  CAS  Google Scholar 

  55. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI (2008) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6:776–788

    Article  PubMed  CAS  Google Scholar 

  56. Guard CL (1980) The reptilian digestive system; general characteristics. In: Schmidt-Nielsen K, Bolis L, Taylor CR (eds) Comparative physiology: primitive mammals. Cambridge University Press, Cambridge, pp 43–51

    Google Scholar 

  57. Clemens ET, Stevens CE, SouthwortH M (1975) Sites of organic-acid production and pattern of digesta movement in gastrointestinal tract of geese. J Nutr 105:1341–1350

    PubMed  CAS  Google Scholar 

  58. Herd RM, Dawson TJ (1984) Fiber digestion in the emu, dromaius-novaehollandiae, a large bird with a simple gut and high-rates of passage. Physiol Zool 57:70–84

    Google Scholar 

  59. Mackie RI (1987) Microbial digestion of forages in herbivores. In: Hacker JB, Ternouth JH (eds) The nutrition of herbivores. Academic Press, Sydney, pp 233–265

    Google Scholar 

  60. McWhorter TJ, Martínez del Rio C (2000) Does gut function limit hummingbird food intake? Physiol Biochem Zool 73:313–324

    Article  PubMed  CAS  Google Scholar 

  61. Dellow DW (1982) Studies on the nutrition of macropodine marsupials.3. the flow of digesta through the stomach and intestine of macropodines and sheep. Aust J Zool 30:751–765

    Article  Google Scholar 

  62. Faichney GJ, White GA (1988) Partition of organic-matter, fiber and protein digestion in ewes fed at a constant rate throughout gestation. Aust J Agric Res 39:493–504

    Article  Google Scholar 

  63. Heller R, Cercasov V, Vonengelhardt W (1986) Retention of fluid and particles in the digestive-tract of the llama (lama-guanacoe f-glama). Comp Biochem Physiol A 83:687–691

    Article  PubMed  CAS  Google Scholar 

  64. Uden P, Rounsaville TR, Wiggans GR, Vansoest PJ (1982) The measurement of liquid and solid digesta retention in ruminants, equines and rabbits given timothy (phleum-pratense) hay. Br J Nutr 48:329–339

    Article  PubMed  CAS  Google Scholar 

  65. Kayouli C, Jouany JP, Demeyer DI, Aliali, Taoueb H, Dardillat C (1993) Comparative-studies on the degradation and mean retention time of solid and liquid-phases in the forestomachs of dromedaries and sheep fed on low-quality roughages from Tunisia. Anim Feed Sci Technol 40:343–355

    Article  CAS  Google Scholar 

  66. Orton RK, Hume ID, Leng RA (1985) Effects of exercise and level of dietary-protein on digestive function in horses. Equine Vet J 17:386–390

    Article  PubMed  CAS  Google Scholar 

  67. Barboza PS (1993) Digestive strategies of the wombats - feed-intake, fiber digestion, and digesta passage in 2 grazing marsupials with hindgut fermentation. Physiol Zool 66:983–999

    Google Scholar 

  68. Sakaguchi E, Itoh H, Uchida S, Horigome T (1987) Comparison of fiber digestion and digesta retention time between rabbits, guinea-pigs, rats and hamsters. Br J Nutr 58:149–158

    Article  PubMed  CAS  Google Scholar 

  69. Clemens ET, Stevens CE (1980) A comparison of gastrointestinal transit-time in 10 species of mammal. J Agric Sci 94:735–737

    Article  Google Scholar 

  70. Sakaguchi E, Nabata A (1992) Comparison of fiber digestion and digesta retention time between nutrias (myocaster-coypus) and guinea-pigs (Cavia porcellus). Comp Biochem Physiol A 103:601–604

    Article  CAS  Google Scholar 

  71. Sakaguchi E, Ohmura S (1992) Fiber digestion and digesta retention time in guinea-pigs (cavia-porcellus), degus (octodon-degus) and leaf-eared mice (phyllotis-darwini). Comp Biochem Physiol A 103:787–791

    Article  CAS  Google Scholar 

  72. Sakaguchi E, Heller R, Becker G, Vonengelhardt W (1986) Retention of digesta in the gastrointestinal-tract of the guinea-pig. J Anim Physiol Anim Nutr 55:44–50

    Article  Google Scholar 

  73. Foley WJ, Hume ID (1987) Passage of digesta markers in 2 species of arboreal folivorous marsupials - the greater glider (Petauroides volans) and the brushtail possum (Trichosurus vulpecula). Physiol Zool 60:103–113

    Google Scholar 

  74. Wellard GA, Hume ID (1981) Digestion and digesta passage in the brushtail possum, trichosurus-vulpecula (kerr). Aust J Zool 29:157–166

    Article  Google Scholar 

  75. Sakaguchi E, Hume ID (1990) Digesta retention and fiber digestion in brushtail possums, ringtail possums and rabbits. Comp Biochem Physiol A 96:351–354

    Article  PubMed  CAS  Google Scholar 

  76. Sakaguchi E, Kaizu K, Nakamichi M (1992) Fiber digestion and digesta retention from different physical forms of the feed in the rabbit. Comp Biochem Physiol A 102:559–563

    Article  CAS  Google Scholar 

  77. Cork SJ, Warner ACI (1983) The passage of digesta markers through the gut of a folivorous marsupial, the koala phascolarctos-cinereus. J Comp Physiol 152:43–51

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the Agence Nationale de la Recherche (ANR), France, under grant No. ANR-09-BIOE-06 (DANAC project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Jacques Godon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godon, JJ., Arcemisbéhère, L., Escudié, R. et al. Overview of the Oldest Existing Set of Substrate-optimized Anaerobic Processes: Digestive Tracts. Bioenerg. Res. 6, 1063–1081 (2013). https://doi.org/10.1007/s12155-013-9339-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-013-9339-y

Keywords

Navigation