Skip to main content
Log in

Assessment of Aboveground and Belowground Vegetative Fragments as Propagules in the Bioenergy Crops Arundo donax and Miscanthus × giganteus

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Giant miscanthus (Miscanthus × giganteus) and giant reed (Arundo donax) are leading bioenergy crops. Both exhibit many invasive characteristics, though only giant reed is known to be invasive. Despite this, neither produces viable seed, limiting movement to vegetative propagules. Therefore, to assess vegetative fragments as potential propagules, we quantified seasonal changes in culm node viability and performance in giant miscanthus and giant reed under greenhouse conditions. Giant miscanthus culms were collected in spring, summer, fall, and winter from established fields, while giant reed culms were collected in summer, fall, and winter from feral stands. Treatments at each timing consisted of whole culms and single-node culm fragments planted in soil or placed in standing water for an 8-week period. Giant miscanthus whole culms and fragments produced shoots and roots in both soil and standing water immediately following cutting from spring to summer, but failed to produce shoots and roots after fall and winter cutting dates. All rhizome fragments survived and generated shoots and roots after burial. By comparison, giant reed produced shoots and roots in both soil and standing water throughout the year, regardless of cutting date. With giant miscanthus, precautions should be taken when living culms or rhizome fragments are harvested and transported through riparian habitats during the summer months. By comparison, giant reed showed a remarkable increase in propagule generation and productivity throughout the year and, thus, escaped propagules present a far greater risk of unintentional establishment compared to giant miscanthus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. United States Energy Information Administration (2012) Ethanol production in the US. Posted January 1. Available at http://www.eia.gov

  2. Georgescu M, Lobell DB, Field CB (2011) Direct climate effects of perennial bioenergy crops in the United States. Proc Nat Acad Sci USA 108(11):4307–4312

    Article  PubMed  CAS  Google Scholar 

  3. Fernando AL, Duarte MP, Almeida J, Boleo S, Mendes B (2010) Environmental impact assessment of energy crops cultivation in Europe. Biofuels, Bioprod Biorefin 4(6):594–604

    Article  CAS  Google Scholar 

  4. Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L et al (2009) Beneficial biofuels—the food, energy, and environment trilemma. Science 325(5938):270–271

    Article  PubMed  CAS  Google Scholar 

  5. Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101(6):1570–1580

    Article  PubMed  CAS  Google Scholar 

  6. Jessup RW (2009) Development and status of dedicated energy crops in the United States. Vitro Cellular & Developmental Biology-Plant 45(3):282–290

    Article  Google Scholar 

  7. Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Chang Biol 14(9):1–14

    Article  Google Scholar 

  8. Energy Independence and Security Act, in H.R. (2007) USA 2007

  9. McDonald RI, Fargione J, Kiesecker J, Miller WM, Powell J (2009) Energy sprawl or energy efficiency: climate policy impacts on natural habitat for the United States of America. PLoS One 4(8):e6802. doi:10.1371/journal.pone.0006802

    Article  PubMed  Google Scholar 

  10. Robertson GP, Dale VH, Doering OC, Hamburg SP, Melillo JM, Wander MM et al (2008) Agriculture—sustainable biofuels redux. Science 322(49):49–50

    Article  PubMed  CAS  Google Scholar 

  11. Field CB, Campbell JE, Lobell DB (2008) Biomass energy: the scale of the potential resource. Trends in Ecology and Evolution 23(2):65–72

    Article  PubMed  Google Scholar 

  12. Perlack D, Wright L, Turhollow F, Graham R, Stokes B, Erback D (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National Laboratory: USDA/DOE

  13. Richardson DM, Blanchard R (2010) Learning from our mistakes: minimizing problems with invasive biofuel plants. Current Opinion in Environmental Sustainability 3(1–2):36–42

    Google Scholar 

  14. Barney JN, DiTomaso JM (2010) Invasive species biology, ecology, management and risk assessment: evaluating and mitigating the invasion risk of biofuel crops. In: Mascia P, Scheffran J, Thomas S, Widlholm J (eds) Biotechnology in agriculture and forestry. Springer, New York, pp 263–284

  15. Zub HW, Brancourt-Hulmel M (2010) Agronomic and physiological performances of different species of Miscanthus, a major energy crop. A review. Agronomy for Sustainable Development 30(2):201–214

    Article  Google Scholar 

  16. Mariani C, Cabrini R, Danin A, Piffanelli P, Fricano A, Gomarasca S et al (2010) Origin, diffusion and reproduction of the giant reed (Arundo donax L.): a promising weedy energy crop. Ann Appl Biol 157(2):191–202

    Article  Google Scholar 

  17. Mantineo M, D'Agosta GM, Copani V, Patane C, Cosentino SL (2009) Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. Field Crops Research 114(2):204–213

    Article  Google Scholar 

  18. Angelini LG, Ceccarini L, Di Nassa NNO, Bonari E (2009) Comparison of Arundo donax L. and Miscanthus × giganteus in a long-term field experiment in central Italy: analysis of productive characteristics and energy balance. Biomass Bioenergy 33(4):635–643

    Article  Google Scholar 

  19. Heaton EA, Dohleman FG, Long SP (2009) Seasonal nitrogen dynamics of Miscanthus × giganteus and Panicum virgatum. Global Change Biology Bioenergy 1(4):297–307

    Article  CAS  Google Scholar 

  20. Low T, Booth C, Sheppard A (2011) Weedy biofuels: what can be done? Current Opinion in Environmental Sustainability 3(1):55–59

    Article  Google Scholar 

  21. DiTomaso JM, Reaser JK, Dionigi CP, Doering OC, Chilton E, Schardt JD et al (2010) Biofuel vs bioinvasion: seeding policy priorities. Environ Sci Technol 44(18):6906–6910

    Article  PubMed  CAS  Google Scholar 

  22. Barney JN, DiTomaso JM (2008) Nonnative species and bioenergy: are we cultivating the next invader? Bioscience 58(1):64–71

    Article  Google Scholar 

  23. Raghu S, Anderson RC, Daehler CC, Davis AS, Wiedenmann RN, Simberloff D et al (2006) Adding biofuels to the invasive species fire? Science 313(5794):1742

    Article  PubMed  CAS  Google Scholar 

  24. Mack RN (2008) Evaluating the credits and debits of a proposed biofuel species: giant reed (Arundo donax). Weed Sci 56(6):883–893

    Article  CAS  Google Scholar 

  25. Glowacka K (2011) A review of the genetic study of the energy crop Miscanthus. Biomass Bioenergy 35(7):2445–2454

    Article  CAS  Google Scholar 

  26. Matlaga DP, Schutte BJ, Davis AS (2012) Age-dependent demographic rates of the bioenergy crop Miscanthus × giganteus in Illinois. Invasive Plant Sci Manage 5(2):238–248

    Article  Google Scholar 

  27. Lambert AM, Dudley TL, Saltonstall K (2010) Ecology and impacts of the large-statured invasive grasses Arundo donax and Phragmites australis in North America. Invasive Plant Science and Management 3(4):489–494

    Article  Google Scholar 

  28. Bell GP (1997) Ecology and management of Arundo donax, and approaches to riparian habitat restoration in southern California. Plant Invasions: Studies from North America and Europe 56:103–113

    Google Scholar 

  29. Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol 176(2):256–273

    Article  PubMed  Google Scholar 

  30. Lockwood JL, Cassey P, Blackburn TM (2009) The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Divers Distrib 15(5):904–910

    Article  Google Scholar 

  31. Gordon DR, Tancig KJ, Onderdonk DA, Gantz CA (2011) Assessing the invasive potential of biofuel species proposed for Florida and the United States using the Australian Weed Risk Assessment. Biomass Bioenergy 35(1):74–79

    Article  Google Scholar 

  32. Jorgensen U (2011) Benefits versus risks of growing biofuel crops: the case of Miscanthus. Current Opinion in Environmental Sustainability 3(1–2):24–30

    Article  Google Scholar 

  33. Byrne M, Stone L (2011) The need for ‘duty of care’ when introducing new crops for sustainable agriculture. Current Opinion in Environmental Sustainability 3(1–2):50–54

    Article  Google Scholar 

  34. Decruyenaere JG, Holt JS (2005) Ramet demography of a clonal invader, Arundo donax (Poaceae), in Southern California. Plant Soil 277(1–2):41–52

    Article  CAS  Google Scholar 

  35. Atkinson CJ (2009) Establishing perennial grass energy crops in the UK: a review of current propagation options for Miscanthus. Biomass Bioenergy 33(5):752–759

    Article  Google Scholar 

  36. Hong J, Meyer M (2007) Effect of medium, date, and node position on rooting of Miscanthus × giganteus stem cuttings. Hortscience 42(4):910

    Google Scholar 

  37. DEFRA, NF0415 (1992) Investigation of stem rooting in Miscanthus. Final Report

  38. Decruyenaere JG, Holt JS (2001) Seasonality of clonal propagation in giant reed. Weed Science 49(6):760–767

    Article  CAS  Google Scholar 

  39. Ceotto E, Di Candilo M (2010) Shoot cuttings propagation of giant reed (Arundo donax L.) in water and moist soil: the path forward? Biomass Bioenergy 34(11):1614–1623

    Article  Google Scholar 

  40. Lambers H, Chapin FS III, Pons TL (eds) (2008) Plant physiological ecology, 2nd edn. Springer, New York

    Google Scholar 

  41. Wijte A, Mizutani T, Motamed ER, Merryfield ML, Miller DE, Alexander DE (2005) Temperature and endogenous factors cause seasonal patterns in rooting by stem fragments of the invasive giant reed, Arundo donax (Poaceae). International Journal of Plant Science 166(3):507–517

    Article  CAS  Google Scholar 

  42. Christian DG, Yates NE, Riche AB (2009) Estimation of ramet production from Miscanthus × giganteus rhizome of different ages. Ind Crop Prod 30(1):176–178

    Article  CAS  Google Scholar 

  43. Pyter R, Heaton E, Dohleman F, Voigt T, Long S (2009) Agronomic experiences with Miscanthus × giganteus in Illinois, USA. Biofuels: Methods and Protocols 581:41–52

    Google Scholar 

  44. Huisman WK, Kortleve WJ (1994) Mechanization of crop establishment, harvest, and post-harvest conservation of Miscanthus sinensis Giganteus. Ind Crop Prod 2:289–297

    Article  Google Scholar 

  45. Pyter RJ, Dohleman FG, Voigta TB (2010) Effects of rhizome size, depth of planting and cold storage on Miscanthus × giganteus establishment in the Midwestern USA. Biomass Bioenergy 34(10):1466–1470

    Article  Google Scholar 

  46. Heaton EA, Dohleman FG, Miguez AF, Juvik JA, Lozovaya V, Widholm J et al (2010) Miscanthus: a promising biomass crop. Adv Bot Res 56:75–137

    Article  Google Scholar 

  47. Honnay O, Jacquemyn H (2010) Clonal plants: beyond the patterns—ecological and evolutionary dynamics of asexual reproduction. Evol Ecol 24(6):1393–1397

    Article  Google Scholar 

  48. Liu J, Dong M, Miao SL, Li Z, Song MH, Wang RQ (2006) Invasive alien plants in China: role of clonality and geographical origin. Biological Invasions 8(7):1461–1470

    Article  Google Scholar 

  49. Barney JN, Whitlow TH (2008) A unifying framework for biological invasions: the state factor model. Biological Invasions 10(3):259–272

    Article  Google Scholar 

  50. Catford JA, Jansson R, Nilsson C (2009) Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib 15:22–40

    Article  Google Scholar 

  51. Barney JN, Mann JJ, Kyser GB, DiTomaso JM (2012) Assessing habitat susceptibility and resistance to invasion by the bioenergy crops switchgrass and Miscanthus × giganteus in California. Biomass Bioenergy 40:143–154

    Article  Google Scholar 

  52. Nilsson C, Brown RL, Jansson R, Merritt DM (2010) The role of hydrochory in structuring riparian and wetland vegetation. Biol Rev 85(4):837–858

    PubMed  Google Scholar 

  53. Spencer DF, Liow PS, Chan WK, Ksander GG, Getsinger KD (2006) Estimating Arundo donax shoot biomass. Aquat Bot 84(3):272–276

    Article  Google Scholar 

  54. Meyerson LA (2008) Biosecurity, biofuels, and biodiversity. Front Ecol Environ 6:291

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Chris van Kessel for reviewing the manuscript and Carlos Figueroa and Rachel Brownsey for their help with the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. DiTomaso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mann, J.J., Kyser, G.B., Barney, J.N. et al. Assessment of Aboveground and Belowground Vegetative Fragments as Propagules in the Bioenergy Crops Arundo donax and Miscanthus × giganteus . Bioenerg. Res. 6, 688–698 (2013). https://doi.org/10.1007/s12155-012-9286-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-012-9286-z

Keywords

Navigation