Skip to main content

Advertisement

Log in

Biogas Production from Steam-Exploded Miscanthus and Utilization of Biogas Energy and CO2 in Greenhouses

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The costs of producing protected vegetables comprise up to 78 % of the total operating costs in greenhouses. These expenses mainly result from energy consumption. Increasing energy efficiency and expanding the use of renewable energy sources are essential for global competitiveness. The aim of this study is to optimize methane production from miscanthus and to evaluate the potential use of miscanthus as a source of electrical energy, heat, and CO2 in vegetable greenhouses. To optimize methane yield, miscanthus was pretreated by steam explosion using different time/temperature combinations. Pretreatment resulted in a more than threefold increase of methane yield from anaerobic digestion (374 lN kgVS−1) compared with untreated miscanthus. Based on technical parameters from two greenhouses (in Northern and Southern Europe), four different energy balances were established. The balances showed that using methane produced by pretreated miscanthus in vegetable greenhouses can enhance the entire process and therefore make it more sustainable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Campiotti C, Alonzo G, Belmonte A, Bibbiani C, Di Carlo F, Dondi F et al (2009) Renewable energy and innovation for sustainable greenhouse districts. 15th Conference of Energy Engineering, 4–5 June, 2009, Baile Felix (Oradea-Romania) University of Oradea, Faculty of Energy Engineering vol.15:1224–1261, 2009, I.S.S.N

    Google Scholar 

  2. Van Os EA (1999) Closed soilless growing systems: a sustainable solution for Dutch greenhouse horticulture. Water Sci Technol 39(5):105–112. doi:10.1016/S0273-1223(99)00091-8

    Article  Google Scholar 

  3. EIA (2006) Annual energy outlook 2006 with projections to 2030. U.S. Department of Energy, Energy Information Administration (EIA), Report#: DOE/EIA-0383 (2006)

  4. CMU (2007) Economic input–output life cycle assessment (EIO-LCA) model [Internet]. Carnegie Mellon University Green Design Institute. http://www.eiolca.net/

  5. López JC, Baille A, Bonachela S, González-Real MM, Pérez-Parra J (2006) Predicting the energy consumption of heated plastic greenhouses in south-eastern Spain. Span J Agric Res 4(4):289–296

    Google Scholar 

  6. Van Berkum E (2009) Greenhouse systems built from 2020 will be energy-neutral. Greenergy Project “Energy Optimisation in European Greenhouses” http://www.greenergy-project.com/4.0.html

  7. KTBL (2009) Brochure on biogas from energy crops. KTBL, D-64289 Darmstadt

  8. Lewandowski I (1998) Propagation method as an important factor in the growth and development of miscanthus × giganteus. Ind Crop Prod DOI:. doi:10.1016/S0926-6690(98)00007-7

  9. Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenerg. doi:10.1016/S0961-9534(00)00032-5

  10. Dohleman FG, Heaton EA, Leakey ADB, Long SP (2009) Does greater leaf-level photosynthesis explain the larger solar energy conversion efficiency of miscanthus relative to switchgrass. Plant Cell Environ. doi:10.1111/j.1365-3040.2009.02017

  11. Hanson AD, Hitz WD (1983) Whole-plant response to water deficits: water deficits and the nitrogen economy. In: Taylor HM, Jordan WR, Sinclair TR (eds) Limitations to efficient water use in crop production. ASA-CSSA-SSA, Madison, WI., pp 331–344

    Google Scholar 

  12. Howell TA, Tolk JA, Schneider AD, Evett SR (1998) Evapotranspiration, yield, and water use efficiency of corn hybrids differing in maturity. Agron J. doi:10.2134/agronj1998.00021962009000010002x

  13. Beale CV, Long SP (1997) Seasonal dynamics of nutriment accumulation and partitioning in the perennial C4-grasses Miscanthus giganteus and Spartina cynosuroides. Biomass Bioenerg. doi:10.1016/S0961-9534(97)00016-0

  14. Jossart JM (2009) Overview of energy crops and their uses in Europe. European Bioenergy Conference, Pulawy, Poland

    Google Scholar 

  15. FAOSTAT (2008) http://faostat.fao.org/site/291/default.aspx

  16. Klimiuk E, Pokój T, Budzyski W, Dubis B (2010) Theoretical and observed biogas production from plant biomass of different fibre contents. Bioresource Technol. doi:10.1016/j.biortech.2010.06.130

  17. Uellendahl H, Wang G, Møller HB, Jørgensen U, Skiadas IV, Gavala HN et al (2008) Energy balance and cost–benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation. Water Sci Technol. doi:10.2166/wst.2008.504

  18. Clark TA, Mackie KL (1987) Steam explosion as a pretreatment for biomass conversion. J Wood Chem Technol. doi:10.1080/02773818708085275

  19. Li J, Lennholm H, Henriksson G, Gellerstedt G (2001) Bio-refinery of lignocellulosic materials for ethanol production. II. Fundaments and strategic design of steam explosion. In: Kyritsis S, Beenackers AACM, Helm P, Grassi A, Chiaramonti D (eds). Proceedings of the first world conference on biomass for energy and industry, vol. 1, pp 767–770

  20. Ballesteros I, Oliva JM, Negro MJ, Manzanares P, Ballesteros M (2002) Enzymic hydrolysis of steam exploded herbaceous agricultural waste (Brassica carinata) at different particle sizes. Process Biochem. doi:10.1016/S0032-9592(02)00070-5

  21. Horn SJ, Nguyen QD, Westereng B, Nilsen PJ, Eijsink VGH (2011) Screening of steam explosion conditions for glucose production from non-impregnated wheat straw. Biomass Bioenerg. doi:10.1016/j.biombioe.2011.10.013

  22. Naumann C, Bassler R (1993) Chemical analysis of feedstock (original title: Die chemische Untersuchung von Futtermittel), 3rd edn. VDLUFA-Verlag, Darmstadt

    Google Scholar 

  23. Van Soest PJ, Wine RH (1967) Use of detergents in the analysis of fibrous feeds. IV The determination of plant cell-wall constituents J Assn Official Anal Chem 50:50–55

    Google Scholar 

  24. VDI Gesellschaft (2006) VDI 4630: Fermentation of organic materials. Characterisation of substrate, sampling, collection of material data, fermentation tests. [1872]. VDI Gesellschaft Energietechnik, pp 92

  25. Boyle WC (1976) Energy recovery from sanitary landfills—a review. In: Schlegel HG, Barnea S (eds) Microbial energy conversion. Pergamon Press, Oxford

    Google Scholar 

  26. Vox G, Teitel M, Pardossi A, Minuto A, Tinivella F, Schettini E (2010) Sustainable greenhouse system. In: Salazar A and Rios I (eds) Sustainable agriculture: technology, planning and management, New York, pp 423, ISBN 9781608762699

  27. Tasin A (2005) The greenhouse concept. Technology and Market Assessment Forum, Seattle

    Google Scholar 

  28. Verberkt H (2003) Supplemental lighting of cut flowers. Canadian Greenhouse Conference

  29. Planning the productive city. http://www.nelsonelson.com/DSA-Nelson-renewable-city-report.pdf

  30. Kramp D (2011) GE’s greenhouse concept. GE Energy Jenbacher gas engines. Global greenhouse presentation

  31. Beitz W, Küttner KH (1987) Dubbel pocket-book for engineering (Dubbel Taschenbuch für den Maschinenbau). Springer, Berlin

    Google Scholar 

  32. Office of Industrial Technologies (1999) Review of combined heat and power technologies. Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy

  33. ENAMA (2005) Biogas co-generation in agro-zootechnical farm. http://www.itabia.it/pdf/casidistudio/cs20.pdf

  34. Garrote G, Dominguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst DOI:. doi:10.1007/s001070050039

  35. Martin-Sampedro R, Capanema EA, Hoeger I, Villar JC, Rojas OJ (2011) Lignin changes after steam explosion and laccase-mediator treatment of eucalyptus wood chips. J Agric Food Chem. doi:10.1021/jf201605f

  36. Martín-Sampedro R, Eugenio ME, Villar JC (2012) Effect of steam explosion and enzymatic pre-treatments on pulping and bleaching of Hesperaloe funifera. Bioresource Technol. doi:10.1016/j.biortech.2012.02.024

  37. Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19:797–841

    Article  CAS  Google Scholar 

  38. Lewandowski I, Kicherer A (1997) Combustion quality of biomass: practical relevance and experiments to modify the biomass quality of Miscanthus X giganteus. Eur J Agron. doi:10.1016/S1161-0301(96)02044-8

  39. Horn SJ, Estevez MM, Nielsen HK, Linjordet R, Eijsink VGH (2011) Biogas production and saccharification of Salix pretreated at different steam explosion conditions. Bioresource Technol. doi:10.1016/j.biombioe.2011.10.013

  40. Wang J, Yue ZB, Chen TH, Peng SC, Yu HQ, Chen HZ (2010) Anaerobic digestibility and fiber composition of bulrush in response to steam explosion. Bioresource Technol. doi:10.1016/j.biortech.2010.03.086

  41. Estevez MM, Linjordet R, Morken J (2012) Effects of steam explosion and co-digestion in the methane production from Salix by mesophilic batch assays. Bioresource Technol. doi:10.1016/j.biortech.2011.11.017

  42. Jørgensen U, Mortensen JV, Kjeldsen JB, Schwarz K (2003) Establishment, development and yield quality of fifteen miscanthus genotypes over three years in Denmark. Acta Agriculturae Scandinavica, Section B - Plant Soil Science. doi:10.1080/09064710310017605

  43. Lewandowski I, Heinz A (2003) Delayed harvest of miscanthus—influences on biomass quantity and quality and environmental impacts of energy production. Eur J Agron. doi:10.1016/S1161-0301(02)00018-7

  44. Converse AO, Kwarteng IK, Grethlein HE, Ooshima H (1989) Kinetics of thermochemical pretreatment of lignocellulosic materials. Appl Biochem Biotechnol DOI:. doi:10.1007/BF02936473

  45. Grohman K, Torget R, Himmel M (1986) Dilute acid pretreatment of biomass at high solids concentration. Biotechnol Bioeng Symp 17:135–151

    Google Scholar 

  46. Laser M, Schulman D, Allen SG, Lichwa J, Antal MJ Jr, Lynd LR (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresource Technol. doi:10.1016/S0960-8524(01)00103-1

  47. Bauer A, Bösch P, Friedl A, Amon T (2009) Analysis of methane potentials of steam-exploded wheat straw and estimation of energy yields of combined ethanol and methane production. J Biotechnol. doi:10.1016/j.jbiotec.2009.01.017

  48. Ramos L (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871

    Article  CAS  Google Scholar 

  49. Sassner P, Galbe M, Zacchi G (2005) Steam pretreatment of Salix with and without SO2 impregnation for production of bioethanol. Appl Biochem Biotechnol. doi:10.1385/ABAB:124:1-3:1101

  50. Horn SJ, Eijsink VGH (2010) Enzymatic hydrolysis of steam-exploded hardwood using short processing times. Biosci Biotechnol Biochem. doi:10.1271/bbb.90762

  51. Bruni E, Jensen A, Angelidaki I (2010) Steam treatment of digested biofibers for increasing biogas production. Bioresource Technol. doi:10.1016/j.biortech.2010.04.064

  52. Campiotti C, Bibbiani C, Dondi F, Viola C (2010) Efficienza energetica e fonti rinnovabili per l’agricoltura protetta. Ambiente, risorse, salute 126:6–12

    Google Scholar 

  53. EUROSTAT, European Commission (2010) Farm structure evolution. http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Farm_structure_evolution

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Bauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menardo, S., Bauer, A., Theuretzbacher, F. et al. Biogas Production from Steam-Exploded Miscanthus and Utilization of Biogas Energy and CO2 in Greenhouses. Bioenerg. Res. 6, 620–630 (2013). https://doi.org/10.1007/s12155-012-9280-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-012-9280-5

Keywords

Navigation