Skip to main content

Advertisement

Log in

Scanning Electron Microscopy and Fermentation Studies on Selected Known Maize Starch Mutants Using STARGEN™ Enzyme Blends

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The conversion of maize (corn) kernels to bio-ethanol is an energy-intensive process involving many stages. One step typically required is the liquefaction of the ground kernel to enable enzyme hydrolysation of the starch to glucose. The enzyme blends STARGEN™ (Genencor) are capable of hydrolysing starch granules without liquefaction, reducing energy inputs and increasing efficiency. Studies were conducted on maize starch mutants amylose extender 1 (ae1), dull 1 (du1) and waxy 1 (wx1) in the inbred line Oh43 to determine whether different maize starches affected hydrolysation rates by STARGEN™ 001 and STARGEN™ 002. All mutants contained similar proportions of starch in the kernel but varied in the amylose to amylopectin ratio. Ground maize kernels were incubated with STARGEN™ 001 and viewed using scanning electron microscopy to examine the hydrolysis action of STARGEN™ 001 on the starch granules. The ae1 mutant exhibited noticeably less enzymic hydrolysis action, on the granules visualised, than wx1 and background line Oh43. Kernels were batch-fermented with STARGEN™ 001 and STARGEN™ 002. The ae1 mutant exhibited a 50% lower ethanol yield compared to the wx1 mutant and background line. A final study compared hydrolysation rates of STARGEN™ 001 and STARGEN™ 002 on purified maize starch, amylopectin and amylose. Though almost twice the amylopectin was hydrolysed using STARGEN™ 002 than STARGEN™ 001 in this trial, fermentations using STARGEN™ 002 resulted in lower ethanol yields than fermentations using STARGEN™ 001. Both STARGEN™ enzyme blends were more suitable for the fermentation of high amylopectin maize starches than high amylose starches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ae1:

Amylose extender 1

du1:

Dull 1

wx1:

Waxy 1

SEM:

Scanning electron microscopy

References

  1. Chum H, Overend R (2001) Biomass and renewable fuels. Fuel Processing Technology 71:187

    Article  CAS  Google Scholar 

  2. Wheals AE, Basso LC, Alves DM, Amorim HV (1999) Fuel ethanol after 25 years. Trends Biotechnol 17:482

    Article  PubMed  CAS  Google Scholar 

  3. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA et al (2006) The path forward for biofuels and biomaterials. Science 311:484

    Article  PubMed  CAS  Google Scholar 

  4. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103:11206

    Article  PubMed  CAS  Google Scholar 

  5. Shapouri H, Duffield JA, Wang M (2003) The energy balance of corn ethanol revisited. Transactions of the ASAE 46:959

    CAS  Google Scholar 

  6. Eksteen JM, Van Rensburg P, Cordero Otero RR, Pretorius IS (2003) Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the alpha-amylase and glucoamylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Biotechnol Bioeng 84:639

    Article  PubMed  CAS  Google Scholar 

  7. Aldiguier A, Alfenore S, Cameleyre X, Goma G, Uribelarrea J, Guillouet S et al (2004) Synergistic temperature and ethanol effect on Saccharomyces cerevisiae dynamic behaviour in ethanol bio-fuel production. Bioprocess Biosyst Eng 26:217

    Article  PubMed  CAS  Google Scholar 

  8. Robertson GH, Wong DWS, Lee CC, Wagschal K, Smith MR, Orts WJ (2006) Native or raw starch digestion: a key step in energy efficient biorefining of grain. J Agric Food Chem 54:353

    Article  PubMed  CAS  Google Scholar 

  9. Shetty JK, Lantero OJ, Dunn-Coleman N (2005) Technological advances in ethanol production. International Sugar Journal 107:605

    CAS  Google Scholar 

  10. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1

    Article  PubMed  CAS  Google Scholar 

  11. Genencor (2008) Product Information sheet—STARGEN™ 002 technical bulletin

  12. Wang P, Singh V, Xu L, Johnston DB, Rausch KD, Tumbleson ME (2005) Comparison of enzymatic (E-Mill) and conventional dry-grind corn processes using a granular starch hydrolyzing enzyme. Cereal Chemistry 82:734

    Article  CAS  Google Scholar 

  13. Wang P, Singh V, Xue H, Johnston DB, Rausch KD, Tumbleson ME (2007) Comparison of raw starch hydrolyzing enzyme with conventional liquefaction and saccharification enzymes in dry-grind corn processing. Cereal Chemistry 84:10

    Article  CAS  Google Scholar 

  14. Stroia I, Begea M, Begea P, Vladescu M (2007) Utilisation of industrial enzymes to produce bioethanol from autochthonous energy crops. Journal of Agroalimentary Processes and Technologies 13:263

    CAS  Google Scholar 

  15. Gibreel A, Sandercock JR, Lan J, Goonewardene LA, Zijlstra RT, Curtis JM et al (2009) Fermentation of barley by using Saccharomyces cerevisiae: examination of barley as a feedstock for bioethanol production and value-added products. Appl Environ Microbiol 75:1363

    Article  PubMed  CAS  Google Scholar 

  16. Davis RA (2008) Parameter estimation for simultaneous saccharification and fermentation of food waste into ethanol using Matlab Simulink. Appl Biochem Biotechnol 147:11

    Article  PubMed  CAS  Google Scholar 

  17. Motto M, Hartings H, Rossi V (2003) Gene discovery to improve the maize grain cell factory. Part 1. AGROFood industry hi-tech 14:60

    Google Scholar 

  18. Schultz JA, Juvik JA (2004) Current models for starch synthesis and the sugary enhancer1 (se1) mutation in Zea mays. Plant Physiol Biochem 42:457

    Article  PubMed  CAS  Google Scholar 

  19. Smith AM, Denyer K, Martin C (1997) The synthesis of the starch granule. Annual Review of Plant Physiology and Plant Molecular Biology 48:67

    Article  PubMed  CAS  Google Scholar 

  20. Tracy W (2001) Sweetcorn. In: Halluaer A (ed) Speciality corns, 2nd edn. CRC, London, p 155

    Google Scholar 

  21. Creech R (1965) Genetic control of carbohydrate synthesis in maize endosperm. Genetics 52:1175

    PubMed  CAS  Google Scholar 

  22. Neuffer MG, Coe E, Wessler S (1997) Mutants of maize, 1st edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  23. Shannon J, Garwood D (1984) Genetics and Physiology of Starch Development. In: Whistler R, BeMiller J, Paschall E (eds) Starch chemistry and technology, 2nd edn. Academic, London, p 25

    Google Scholar 

  24. Jenkins PJ, Donald AM (1995) The influence of amylose on starch granule structure. Int J Biol Macromol 17:315

    Article  PubMed  CAS  Google Scholar 

  25. Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54:207

    Article  PubMed  CAS  Google Scholar 

  26. Adams J, Bryant D, Robson G, Morris P, Fish N, Donnison I (2007) Preparation and partial enzymic hydrolysation of single maize kernels for use in laboratory scale analysis. In: 15th European Biomass Conference and Exhibition. Berlin, Germany, p 741

  27. Wright AJ, Carver TLW, Thomas BJ, Fenwick NID, Kunoh H, Nicholson RL (2000) The rapid and accurate determination of germ tube emergence site by Blumeria graminis conidia. Physiological and Molecular Plant Pathology 57:281

    Article  Google Scholar 

  28. Stuart B (2004) Infrared spectroscopy: fundamentals and applications. Wiley, Chichester

    Book  Google Scholar 

  29. Jeffree C, Read N (1991) Ambient- and Low-Temperature Scanning Electron Microscopy. In: Hall J, Hawes C (eds) Electron microscopy of plant cells. Academic, London, p 313

    Google Scholar 

  30. Fannon JE, Hauber RJ, Bemiller JN (1992) Surface pores of starch granules. Cereal Chemistry 69:284

    Google Scholar 

  31. Han XZ, Benmoussa M, Gray JA, BeMiller JN, Hamaker BR (2005) Detection of proteins in starch granule channels. Cereal Chemistry 82:351

    Article  CAS  Google Scholar 

  32. Myers AM, Morell MK, James MG, Ball SG (2000) Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiol 122:989

    Article  PubMed  CAS  Google Scholar 

  33. NREL (2010) Theoretical ethanol yield calculator. US Department of Energy, Washington, DC

    Google Scholar 

  34. Kubo A, Akdogan G, Nakaya M, Shojo A, Suzuki S, Satoh H et al (2010) Structure, physical, and digestive properties of starch from wx ae double-mutant rice. J Agric Food Chem 58:4463

    Article  PubMed  CAS  Google Scholar 

  35. Zhang GY, Ao ZH, Hamaker BR (2006) Slow digestion property of native cereal starches. Biomacromolecules 7:3252

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC) UK and Genencor International (Palo Alto, CA, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain S. Donnison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, J.M.M., Teunissen, P.J.M., Robson, G. et al. Scanning Electron Microscopy and Fermentation Studies on Selected Known Maize Starch Mutants Using STARGEN™ Enzyme Blends. Bioenerg. Res. 5, 330–340 (2012). https://doi.org/10.1007/s12155-011-9135-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-011-9135-5

Keywords

Navigation