Skip to main content
Log in

Sterols and membrane dynamics

  • Review
  • Published:
Journal of Chemical Biology

Abstract

The effect of sterols from mammals, plants, fungi, and bacteria on model and natural membrane dynamics are reviewed, in the frame of ordering–disordering properties of membranes. It is shown that all sterols share a common property: the ability to regulate dynamics in order to maintain membranes in a microfluid state where it can convey important biological processes. Depending on the sterol class, this property is modulated by molecular modifications that have occurred during evolution. The role of sterols in rafts, antibiotic complexes, and in protecting membranes from the destructive action of amphipathic toxins is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Dowhan W (1997) Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Biochem 66:199–232

    Article  CAS  Google Scholar 

  2. Ribeiro N, Streiff S, Heissler D, Elhabiri M, Albrecht-Gary AM, Atsumi M, Gotoh M, Desaubry L, Nakatani Y, Ourisson G (2007) Reinforcing effect of bi- and tri-cyclopolyprenols on ‘primitive’ membranes made of polyprenyl phosphates. Tetrahedron 63:3395–3407

    Article  CAS  Google Scholar 

  3. Schaller H (2003) The role of sterols in plant growth and development. Prog Lipid Res 42:163–175

    Article  CAS  Google Scholar 

  4. Saito H, Suzuki N (2007) Distributions and sources of hopanes, hopanoic acids and hopanols in Miocene to recent sediments from ODP Leg 190, Nankai Trough. Org Geochem 38:1715–1728

    Article  CAS  Google Scholar 

  5. Simons K, Ehehalt R (2002) Cholesterol, lipid rafts, and disease. J Clin Invest 110:597–603

    CAS  Google Scholar 

  6. Beck JG, Mathieu D, Loudet C, Buchoux S, Dufourc EJ (2007) Plant sterols in “rafts”: a better way to regulate membrane thermal shocks. FASEB J 21:1714–1723

    Article  CAS  Google Scholar 

  7. Dufourc EJ (2008) The role of phytosterols in plant adaptation to temperature. Plant Sign Behav 3:133–134

    Google Scholar 

  8. Milon A, Nakatani Y, Kintzinger JP, Ourisson G (1989) The conformation of cycloartenol investigated by NMR and molecular mechanics. Helv Chim Acta 72:1–13

    Article  CAS  Google Scholar 

  9. De Kruijff B, Demel RA (1974) Polyene antibiotic sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. Part 3: molecular structure of the polyene antibiotic cholesterol complexes. Biochim Biophys Acta 339:57–70

    Article  Google Scholar 

  10. De Kruijff B, Gerritsen WJ, Oerlemans A, Demel R, Van Deenen LLM (1974) Polyene antibiotic sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. Part 2: temperature dependence of the polyene antibiotic sterol complex formation. Biochim Biophys Acta 339:44–56

    Article  Google Scholar 

  11. De Kruijff B, Gerritsen WJ, Oerlemans A, Demel R, Van Deenen LLM (1974) Polyene antibiotic sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. Part 1: specificity of the membrane permeability changes induced by the polyene antibiotics. Biochim Biophys Acta 339:30–43

    Article  Google Scholar 

  12. Dufourc EJ (2006) Solid state NMR in biomembranes. In: Larijani B, Woscholski R, Rosser CA (eds) Chemical biology. Wiley, London, pp 113–131

    Chapter  Google Scholar 

  13. Douliez JP, Leonard A, Dufourc EJ (1995) Restatement of order parameters in biomembranes—calculation of C–C bond order parameters from C–D quadrupolar splittings. Biophys J 68:1727–1739

    Article  CAS  Google Scholar 

  14. Douliez JP, Leonard A, Dufourc EJ (1996) Conformational order of DMPC sn-1 versus sn-2 chains and membrane thickness: an approach to molecular protrusion by solid state H-2-NMR and neutron diffraction. J Phys Chem 100:18450–18457

    Article  CAS  Google Scholar 

  15. Weisz K, Grobner G, Mayer C, Stohrer J, Kothe G (1992) Deuteron nuclear-magnetic-resonance study of the dynamic organization of phospholipid cholesterol bilayer-membranes—molecular-properties and viscoelastic behavior. Biochemistry 31:1100–1112

    Article  CAS  Google Scholar 

  16. Vist MR, Davis JH (1990) Phase equilibria of cholesterol dipalmitoylphosphatidylcholine mixtures: 2H-nuclear magnetic resonance and differential scanning calorimetry. Biochemistry 29:451–464

    Article  CAS  Google Scholar 

  17. Marinov R, Dufourc EJ (1995) Cholesterol stabilizes the hexagonal type-II phase of 1-palmitoyl-2-oleoyl SN glycero-3-phosphoethanolamine—a solid-state H-2 and P-31 NMR-study. J Chim Phys 92:1727–1731

    CAS  Google Scholar 

  18. Dufourc EJ, Parish EJ, Chitrakorn S, Smith ICP (1984) Structural and dynamical details of cholesterol lipid interaction as revealed by deuterium NMR. Biochemistry 23:6062–6071

    Article  CAS  Google Scholar 

  19. Marsan MP, Muller I, Ramos C, Rodriguez F, Dufourc EJ, Czaplicki J, Milon A (1999) Cholesterol orientation and dynamics in dimyristoylphosphatidylcholine bilayers: a solid state deuterium NMR analysis. Biophys J 76:351–359

    Article  CAS  Google Scholar 

  20. Leonard A, Escrive C, Laguerre M, Pebay-Peyroula E, Neri W, Pott T, Katsaras J, Dufourc EJ (2001) Location of cholesterol in DMPC membranes. A comparative study by neutron diffraction and molecular mechanics simulation. Langmuir 17:2019–2030

    Article  CAS  Google Scholar 

  21. Dufourc EJ, Smith ICP (1986) A detailed analysis of the motions of cholesterol in biological-membranes by H-2-NMR relaxation. Chem Phys Lipids 41:123–135

    Article  CAS  Google Scholar 

  22. Valic MI, Gorissen H, Cushley RJ, Bloom M (1979) Deuterium magnetic resonance study of cholesterol esters in membranes. Biochemistry 18:854–859

    Article  CAS  Google Scholar 

  23. Léonard A, Milon A, Krajewski-Bertrand M-A, Dufourc EJ (1993) Modulation of membrane hydrophobic thickness by cholesterol, cycloartenol and hopanoid. A solid state 2H-NMR study. Bull Magn Reson 15:124–127

    Google Scholar 

  24. Hsueh YW, Gilbert K, Trandum C, Zuckermann M, Thewalt J (2005) The effect of ergosterol on dipalmitoylphosphatidylcholine bilayers: a deuterium NMR and calorimetric study. Biophys J 88:1799–1808

    Article  CAS  Google Scholar 

  25. Haines TH (2001) Do sterols reduce proton and sodium leaks through lipid bilayers? Prog Lipid Res 40:299–324

    Article  CAS  Google Scholar 

  26. Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224

    Article  CAS  Google Scholar 

  27. London E, Brown DA (2000) Insolubility of lipids in Triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim Biophys Acta-Biomembr 1508:182–195

    Article  CAS  Google Scholar 

  28. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  Google Scholar 

  29. Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, Jacobson K, Gratton E (2001) Lipid rafts reconstituted in model membranes. Biophys J 80:1417–1428

    Article  CAS  Google Scholar 

  30. Schroeder R, London E, Brown D (1994) Interactions between saturated ACYL chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins—GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci U S A 91:12130–12134

    Article  CAS  Google Scholar 

  31. Dufourc EJ, Bonmatin JM, Dufourcq J (1989) Membrane-structure and dynamics by H-2-NMR and P-31-NMR—effects of amphipatic peptidic toxins on phospholipid and biological-membranes. Biochimie 71:117–123

    Article  CAS  Google Scholar 

  32. Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta Biomembr 1462:55–70

    Article  CAS  Google Scholar 

  33. Dufourc EJ, Faucon JF, Fourche G, Dufourcq J, Gulikkrzywicki T, Lemaire M (1986) Reversible disk-to-vesicle transition of melittin–DPPC complexes triggered by the phospholipid acyl chain melting. FEBS Lett 201:205–209

    Article  CAS  Google Scholar 

  34. Dufourc EJ, Smith ICP, Dufourcq J (1986) Molecular details of melittin-induced lysis of phospholipid-membranes as revealed by deuterium and phosphorus NMR. Biochemistry 25:6448–6455

    Article  CAS  Google Scholar 

  35. Pott T, Dufourcq J, Dufourc EJ (1996) Fluid or gel phase lipid bilayers to study peptide membrane interactions? Eur Biophys J Biophys Lett 25:55–59

    CAS  Google Scholar 

  36. Pott T, Dufourc EJ (1995) Action of melittin on the DPPC–cholesterol liquid-ordered phase—a solid-state H-2-NMR and P-31-NMR study. Biophys J 68:965–977

    Article  CAS  Google Scholar 

  37. Mason AJ, Marquette A, Bechinger B (2007) Zwitterionic phospholipids and sterols modulate antimicrobial peptide-induced membrane destabilization. Biophys J 93:4289–4299

    Article  CAS  Google Scholar 

  38. Dufourc EJ, Smith ICP (1985) H-2 NMR evidence for antibiotic-induced cholesterol immobilization in biological model membranes. Biochemistry 24:2420–2424

    Article  CAS  Google Scholar 

  39. Kelusky EC, Dufourc EJ, Smith ICP (1983) Direct observation of molecular ordering of cholesterol in human-erythrocyte membranes. Biochim Biophys Acta 735:302–304

    Article  CAS  Google Scholar 

  40. Gamier-Lhomme M, Grelard A, Byrne RD, Loudet C, Dufourc EJ, Larijani B (2007) Probing the dynamics of intact cells and nuclear envelope precursor membrane vesicles by deuterium solid state NMR spectroscopy. Biochim Biophys Acta Biomembr 1768:2516–2527

    Article  CAS  Google Scholar 

  41. Garnier M, Dufourc EJ, Larijani B (2006) Characterisation of lipids in cell signalling and membrane dynamics by nuclear magnetic resonance spectroscopy and mass spectrometry. Sign Transduc 6:133–143

    Article  CAS  Google Scholar 

  42. Leonard A, Dufourc EJ (1991) Interactions of cholesterol with the membrane lipid matrix—a solid-state NMR approach. Biochimie 73:1295–1302

    Article  CAS  Google Scholar 

  43. Chana RS, Cushley RJ, Wassall SR, Smith ICP, Dufourc EJ (1985) Organization of cholesteryl esters in membranes—a deuterium nuclear magnetic-resonance study. Chem Phys Lipids 37:345–356

    Article  CAS  Google Scholar 

  44. Faure C, Tranchant JF, Dufourc EJ (1996) Comparative effects of cholesterol and cholesterol sulfate on hydration and ordering of dimyristoylphosphatidylcholine membranes. Biophys J 70:1380–1390

    Article  CAS  Google Scholar 

  45. Aussenac F, Tavares M, Dufourc EJ (2003) Cholesterol dynamics in membranes of raft composition: a molecular point of view from H-2 and P-31 solid-state NMR. Biochemistry 42:1383–1390

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erick J. Dufourc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dufourc, E.J. Sterols and membrane dynamics. J Chem Biol 1, 63–77 (2008). https://doi.org/10.1007/s12154-008-0010-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12154-008-0010-6

Keywords

Navigation