Skip to main content

Advertisement

Log in

Correlation of HIF-1α/HIF-2α expression with FDG uptake in lung adenocarcinoma

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objectives

Hypoxia is a key element involved in the development and progression of tumors. HIF-1α may transiently induce and mediate the response to acute and severe hypoxia, while HIF-2α may induce a longer response and may control the response to chronic and moderate hypoxia. Hypoxia increases the cellular uptake of FDG. Therefore, HIF may play an important role in the process of the cellular uptake of FDG. The aim of this study was to compare HIF-1α/HIF-2α expression with FDG uptake, Glut-1 expression, and prognosis in the patients with lung adenocarcinoma and to investigate the role of HIF-1α/HIF-2α in the uptake of FDG in lung adenocarcinoma.

Methods

In the current work, we compared the immunohistochemical expression of HIF-1α and HIF-2α in surgical specimens of 44 patients with lung adenocarcinoma. The relationships between HIF-α expression and Glut-1 expression, FDG uptake, and clinicopathological factors, including prognosis, were analyzed.

Results

There was a marginal association between HIF-1α and HIF-2α expressions (P = 0.076). We found a significant correlation between HIF-2α expression and FDG uptake (P = 0.0001). HIF-1α expression showed a marginal association with FDG uptake (P = 0.066). FDG uptake correlated more significantly with HIF-2α expression than with HIF-1α expression. A significant correlation was noticed between Glut-1 expression and both HIF-1α and HIF-2α expressions (P = 0.005 and P = 0.003, respectively). Univariate analysis of disease-free survival demonstrated that FDG uptake and HIF-2α expression, but not HIF-1α expression, were related to recurrence (P < 0.0001).

Conclusion

FDG uptake correlated more significantly with HIF-2α expression than with HIF-1α expression, and both FDG uptake and HIF-2α expression, but not HIF-1α expression was correlated with post-operative recurrence in the patients with lung adenocarcinoma. These results suggest that both FDG uptake and HIF-2α expression may represent a more aggressive phenotype and that HIF-2α may play a more important role than HIF-1α in the uptake of FDG in lung adenocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol. 2001;2:533–43.

    Article  CAS  PubMed  Google Scholar 

  2. Dachs GU, Patterson AV, Firth JD, Ratcliffe PJ, Townsend KM, Stratford IJ, et al. Targeting gene expression to hypoxic tumor cells. Nat Med. 1997;3:515–20.

    Article  CAS  PubMed  Google Scholar 

  3. Jiang BH, Semenza GL, Bauer C, Marti HH. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol. 1996;271:1172–80.

    Google Scholar 

  4. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9:677–84.

    Article  CAS  PubMed  Google Scholar 

  5. Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004;5:343–54.

    Article  CAS  PubMed  Google Scholar 

  6. Maxwell PH, Ratcliffe PJ. Oxygen sensors and angiogenesis. Semin Cell Dev Biol. 2002;13:29–37.

    Article  CAS  PubMed  Google Scholar 

  7. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–32.

    Article  CAS  PubMed  Google Scholar 

  8. Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ, et al. HIF-2 alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 2006;20:557–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sato M, Tanaka T, Maemura K, Uchiyama T, Sato H, Maeno T, et al. The Pai-1 gene as a direct target of endothelial PAS domain protein-1 in adenocarcinoma A549 cells. Am J Respir Cell Mol Biol. 2004;31:209–15.

    Article  CAS  PubMed  Google Scholar 

  10. Pedersen MW, Holm S, Lund EL, Højgaard L, Kristjansen PE. Coregulation of glucose uptake and vascular endothelial growth factor (VEGF) in two small-cell lung cancer (SCLC) sublines in vivo and in vitro. Neoplasia. 2001;3:80–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Clavo AC, Brown RS, Wahl RL. Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. J Nucl Med. 1995;36:1625–32.

    CAS  PubMed  Google Scholar 

  12. Guo J, Higashi K, Ueda Y, Oguchi M, Takegami T, Toga H, et al. Microvessel density: correlation with 18F-FDG uptake and prognostic impact in lung adenocarcinomas. J Nucl Med. 2006;47:419–25.

    CAS  PubMed  Google Scholar 

  13. Guo J, Higashi K, Ueda Y, Ishigaki Y, Sakuma T, Oguchi M, et al. VEGF-A and its isoform VEGF121 mRNA expression measured by quantitative real-time RT-PCR: correlation with F-18 FDG uptake and aggressiveness of lung adenocarcinoma: preliminary study. Ann Nucl Med. 2011;25:29–36.

    Article  CAS  PubMed  Google Scholar 

  14. van Baardwijk A, Dooms C, van Suylen RJ, Verbeken E, Hochstenbag M, Dehing-Oberije C, et al. The maximum uptake of (18)F-deoxyglucose on positron emission tomography scan correlates with survival, hypoxia inducible factor-1α and GLUT-1 in non-small cell lung cancer. Eur J Cancer. 2007;43:1392–8.

    Article  CAS  PubMed  Google Scholar 

  15. Dooms C, Verbeken E, Stroobants S, Vansteenkiste J. Biological correlates of the maximum 18-fluoro-2-deoxy-glucose uptake on positron emission tomography in non-small cell lung carcinoma after induction chemotherapy. J Thorac Oncol. 2009;4:1221–5.

    Article  PubMed  Google Scholar 

  16. Kaira K, Endo M, Abe M, Nakagawa K, Ohde Y, Okumura T, et al. Biologic correlates of 18F-FDG uptake on PET in pulmonary pleomorphic carcinoma. Lung Cancer. 2011;71:144–50.

    Article  PubMed  Google Scholar 

  17. Yokoyama Y, Charnock-Jones DS, Licence D, Yanaihara A, Hastings JM, Holland CM, et al. Expression of vascular endothelial growth factor (VEGF)-D and its receptor, VEGF receptor 3, as a prognostic factor in endometrial carcinoma. Clin Cancer Res. 2003;9:1361–9.

    CAS  PubMed  Google Scholar 

  18. Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC. Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation. Mol Cell Biol. 2003;23:9361–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Giatromanolaki A, Koukourakis MI, Sivridis E, Turley H, Talks K, Pezzella F, et al. Relation of hypoxia inducible factor 1α and 2α in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer. 2001;85:881–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu XH, Qian C, Yuan K. Correlations of hypoxia-inducible factor-1α/hypoxia-inducible factor-2α expression with angiogenesis factors expression and prognosis in non-small cell lung cancer. Chin Med J. 2011;124:11–8.

    PubMed  Google Scholar 

  21. Higashi K, Ito K, Hiramatsu Y, Ishikawa T, Sakuma T, Matsunari I, et al. 18F-FDG uptake by primary tumor as a predictor of intratumoral lymphatic vessel invasion and lymph node involvement in non-small cell lung cancer: analysis of a multicenter study. J Nucl Med. 2005;46:267–73.

    PubMed  Google Scholar 

  22. Tsutani Y, Miyata Y, Misumi K, Ikeda T, Mimura T, Hihara J, et al. Difference in prognostic significance of maximum standardized uptake value on [18F]-fluoro-2-deoxyglucose positron emission tomography between adenocarcinoma and squamous cell carcinoma of the lung. Jpn J Clin Oncol. 2011;41:890–6.

    Article  PubMed  Google Scholar 

  23. Nguyen XC, Lee WW, Chung JH, Park SY, Sung SW, Kim YK, et al. FDG uptake, glucose transporter type 1, and Ki-67 expressions in non-small-cell lung cancer: correlations and prognostic values. Eur J Radiol. 2007;62:214–9.

    Article  PubMed  Google Scholar 

  24. Uchida T, Rossignol F, Matthay MA, Mounier R, Couette S, Clottes E, et al. Prolonged hypoxia differentially regulates hypoxia-inducible factor (HIF)-1α and HIF-2α expression in lung epithelial cells: implication of natural antisense HIF-1α. J Biol Chem. 2004;279:14871–8.

    Article  CAS  PubMed  Google Scholar 

  25. Mottet D, Dumont V, Deccache Y, Demazy C, Ninane N, Raes M, et al. Regulation of hypoxia-inducible factor-1α protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3β pathway in HepG2 cells. J Biol Chem. 2003;278:31277–85.

    Article  CAS  PubMed  Google Scholar 

  26. Holmquist-Mengelbier L, Fredlund E, Löfstedt T, Noguera R, Navarro S, Nilsson H, et al. Recruitment of HIF-1α and HIF-2α to common target genes is differentially regulated in neuroblastoma: HIF-2α promotes an aggressive phenotype. Cancer Cell. 2006;10:413–23.

    Article  CAS  PubMed  Google Scholar 

  27. Kim WY, Perera S, Zhou B, Carretero J, Yeh JJ, Heathcote SA, et al. HIF2α cooperates with RAS to promote lung tumorigenesis in mice. J Clin Invest. 2009;119:2160–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pàez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Viñals F, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009;15:220–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kamlah F, Eul BG, Li S, Lang N, Marsh LM, Seeger W, et al. Intravenous injection of siRNA directed against hypoxia-inducible factors prolongs survival in a Lewis lung carcinoma cancer model. Cancer Gene Ther. 2009;16:195–205.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially supported by a grant-in-aid for scientific research (26460442) to YU from the Ministry of Education, Science, and Culture, Japan and a grant for specially promoted research from Kanazawa Medical University (SR2012-01) to YU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kotaro Higashi.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higashi, K., Yamagishi, T., Ueda, Y. et al. Correlation of HIF-1α/HIF-2α expression with FDG uptake in lung adenocarcinoma. Ann Nucl Med 30, 708–715 (2016). https://doi.org/10.1007/s12149-016-1116-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-016-1116-5

Keywords

Navigation