Skip to main content
Log in

Isolated cancer stem cells from human liver cancer: morphological and functional characteristics in primary culture

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Primary liver cancer cells (PLCs) could more directly simulate the human tumor microenvironment. Compared with liver cancer cell lines, PLCs could reflect the human situation. As in previous studies, tumor stem cells were a small number of cancer cells in the microenvironment and considered to be one of the origins of liver cancer. This study aimed to screen stem cells in PLCs, analyze their biological characteristics, propose the possibility that liver cancer originated from stem cells.

Methods

Liver cancer tissues of 17 patients were taken from the Affiliated Hospital of Guangdong Medical College, and PLCs were isolated by tissue slice method. The proliferation, tumor formation in nude mice, stem protein expression of PLCs were observed. C-kit+ liver cancer cells were screened and their biological characteristics were analyzed.

Results

PLCs could be stably passaged. Transmission electron microscopy indicated that the nucleus was irregular, there were many mitochondria, and the endoplasmic reticulum was irregularly distributed. PLCs could express E-Cadherin, Oct-4, β-Catenin, Sox2, CD326, C-kit, GPC3, Nanog. The proliferation curve of PLCs and Hep3B cells were similar, and they all could form tumors in nude mice. Flow-sorted C-kit+ PLCs, as well as C-kit+ Hep3B cells could highly express Bmi1, Sox2, Oct4, Notch1, Nanog, C-kit, β-Catenin, Smo, Nestin, ABCG2, ABCB1. And they also could clone and form tumors in vivo. But C-kit+ PLCs were more sensitive to chemotherapy drugs than C-kit+ liver cancer cell lines.

Conclusion

C-kit+ PLCs had the characteristics of tumor stem cells and were more sensitive to chemotherapy drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bray F, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  Google Scholar 

  2. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391(10127):1301–14.

    Article  PubMed  Google Scholar 

  3. Yarchoan M, et al. Recent developments and therapeutic strategies against hepatocellular carcinoma. Can Res. 2019;79(17):4326–30.

    Article  CAS  Google Scholar 

  4. Forner A, et al. Treatment of intermediate-stage hepatocellular carcinoma. Nat Rev Clin Oncol. 2014;11(9):525–35.

    Article  CAS  PubMed  Google Scholar 

  5. Shimokawa M, et al. Visualization and targeting of LGR5(+) human colon cancer stem cells. Nature. 2017;545(7653):187–92.

    Article  CAS  PubMed  Google Scholar 

  6. Lopez-Lazaro M. The stem cell division theory of cancer. Crit Rev Oncol Hematol. 2018;123:95–113.

    Article  PubMed  Google Scholar 

  7. Raggi C, et al. Cancer stem cells and tumor-associated macrophages: a roadmap for multitargeting strategies. Oncogene. 2016;35(6):671–82.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao J. Cancer stem cells and chemoresistance: the smartest survives the raid. Pharmacol Ther. 2016;160:145–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lawson DA, et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature. 2015;526(7571):131–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nazio F, et al. Autophagy and cancer stem cells: molecular mechanisms and therapeutic applications. Cell Death Differ. 2019;26(4):690–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Blair A, et al. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood. 1997;89(9):3104–12.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou L, et al. Edmondson–Steiner grade: a crucial predictor of recurrence and survival in hepatocellular carcinoma without microvascular invasion. Pathol Res Pract. 2017;213(7):824–30.

    Article  PubMed  Google Scholar 

  13. Al-Hajj M, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100(7):3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Singh SK, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821–8.

    CAS  PubMed  Google Scholar 

  15. Collins AT, et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65(23):10946–51.

    Article  CAS  PubMed  Google Scholar 

  16. Broutier L, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med. 2017;23(12):1424–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sia D, et al. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology. 2017;152(4):745–61.

    Article  CAS  PubMed  Google Scholar 

  18. Nuciforo S, et al. Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep. 2018;24(5):1363–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oikawa T. Cancer stem cells and their cellular origins in primary liver and biliary tract cancers. Hepatology. 2016;64(2):645–51.

    Article  PubMed  Google Scholar 

  20. Dickinson BT, et al. Molecular markers for colorectal cancer screening. Gut. 2015;64(9):1485–94.

    Article  CAS  PubMed  Google Scholar 

  21. Lennartsson J, Ronnstrand L. Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol Rev. 2012;92(4):1619–49.

    Article  CAS  PubMed  Google Scholar 

  22. Ashman LK, Griffith R. Therapeutic targeting of c-KIT in cancer. Expert Opin Investig Drugs. 2013;22(1):103–15.

    Article  CAS  PubMed  Google Scholar 

  23. Liu Q, et al. c-kit(+) cells adopt vascular endothelial but not epithelial cell fates during lung maintenance and repair. Nat Med. 2015;21(8):866–8.

    Article  CAS  PubMed  Google Scholar 

  24. Khosla R, et al. EpCAM+ liver cancer stem-like cells exhibiting autocrine wnt signaling potentially originate in cirrhotic patients. Stem Cells Transl Med. 2017;6(3):807–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van der Heijden M, Vermeulen L. Stem cells in homeostasis and cancer of the gut. Mol Cancer. 2019;18(1):66.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dong L, et al. The special stemness functions of Tbx3 in stem cells and cancer development. Semin Cancer Biol. 2019;57:105–10.

    Article  CAS  PubMed  Google Scholar 

  27. Li L, Neaves WB. Normal stem cells and cancer stem cells: the niche matters. Cancer Res. 2006;66(9):4553–7.

    Article  CAS  PubMed  Google Scholar 

  28. Lapidot T, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8.

    Article  CAS  PubMed  Google Scholar 

  29. Glumac PM, LeBeau AM. The role of CD133 in cancer: a concise review. Clin Transl Med. 2018;7(1):18.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ishizawa K, et al. CD45(+)CD326(+) cells are predictive of poor prognosis in non-small cell lung cancer patients. Clin Cancer Res. 2019;25(22):6756–63.

    Article  CAS  PubMed  Google Scholar 

  31. Wang JR, et al. ESA-UbiSite: accurate prediction of human ubiquitination sites by identifying a set of effective negatives. Bioinformatics. 2017;33(5):661–8.

    Article  CAS  PubMed  Google Scholar 

  32. Hintermann E, et al. Upregulation of matrilin-2 expression in murine hepatic stellate cells during liver injury has no effect on fibrosis formation and resolution. Liver Int. 2015;35(4):1265–73.

    Article  CAS  PubMed  Google Scholar 

  33. Ortiz MV, et al. Immunotherapeutic targeting of GPC3 in pediatric solid embryonal tumors. Front Oncol. 2019;9:108.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Castelli G, Pelosi E, Testa U. Liver cancer: molecular characterization, clonal evolution and cancer stem cells. Cancers (Basel). 2017;9(9):127.

    Article  Google Scholar 

  35. Yin S, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer. 2007;120(7):1444–50.

    Article  CAS  PubMed  Google Scholar 

  36. Ma S, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology. 2007;132(7):2542–56.

    Article  CAS  PubMed  Google Scholar 

  37. Yang ZF, et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell. 2008;13(2):153–66.

    Article  CAS  PubMed  Google Scholar 

  38. Yamashita T, et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology. 2009;136(3):1012–24.

    Article  CAS  PubMed  Google Scholar 

  39. Chen Y, et al. CD133(+)EpCAM(+) phenotype possesses more characteristics of tumor initiating cells in hepatocellular carcinoma Huh7 cells. Int J Biol Sci. 2012;8(7):992–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Terris B, Cavard C, Perret C. EpCAM, a new marker for cancer stem cells in hepatocellular carcinoma. J Hepatol. 2010;52(2):280–1.

    Article  CAS  PubMed  Google Scholar 

  41. Yarden Y, et al. Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J. 1987;6(11):3341–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ponnurangam S, et al. Tandutinib inhibits the Akt/mTOR signaling pathway to inhibit colon cancer growth. Mol Cancer Ther. 2013;12(5):598–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the participation of our patient.

Funding

This research was supported by the Jinan University Scientific Research Cultivation and Innovation Fund (Youth Fund Project: 11619356) and Flagship specialty construction project-General surgery (Funding No.: 711003).

Author information

Authors and Affiliations

Authors

Contributions

MH written this article, ML supplied the study conception, and HH edited pictures. All authors read and approved the manuscript.

Corresponding author

Correspondence to M. Hu.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest. The authors state that all data generated during this study are included in this published article.

Ethical approval

The study was approved by the ethics committee of affiliated hospital of guangdong medical university.

Informed consent

All patients provided informed consent for the use of their data for research purposes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Li, M., Huang, H. et al. Isolated cancer stem cells from human liver cancer: morphological and functional characteristics in primary culture. Clin Transl Oncol 24, 48–56 (2022). https://doi.org/10.1007/s12094-021-02667-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02667-w

Keywords

Navigation