Skip to main content
Log in

Recent findings on the role of fungal products in the treatment of cancer

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

In modern medicine, natural products have aided humans against their battles with cancer. Among these products, microorganisms, medicinal herbs and marine organisms are considered to be of great benefit. In recent decades, more than 30 fungal immunity proteins have been identified and proved to be extractable from a wide range of fungi, including mushrooms. Although chemotherapy is used to overcome cancer cells, the side effects of this method are of great concern in clinical practice. Fungal products and their derivatives constitute more than 50% of the clinical drugs currently being used globally. Approximately 60% of the clinically approved drugs for cancer treatment have natural roots. Anti-tumor immunotherapy is prospective with a rapidly growing market worldwide due to its high efficiency, immunity, and profit. Polysaccharide extracts from natural sources are being used in clinical and therapeutic trials on cancer patients. This review aims to present the latest findings in cancer treatment through isolated and extraction of fungal derivatives and other natural biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vaca I, Chávez R. Bioactive compounds produced by Antarctic filamentous fungi. In: Rosa LH, editor. Fungi of Antarctica. Cham: Springer; 2019. p. 265–83.

    Chapter  Google Scholar 

  2. Salehi B, Bayat M, Dezfulian M, Sabokbar A, Tabaraie B. The assessment of anti-tumoral activity of polysaccharide extracted from terrestrial filamentous fungus. Saudi J Biol Sci. 2018;25(6):1236–41.

    Article  CAS  PubMed  Google Scholar 

  3. Stanojković T. Investigations of lichen secondary metabolites with potential anticancer activity. In: Ranković B, editor. Lichen secondary metabolites. Cham: Springer; 2019. p. 155–74.

    Chapter  Google Scholar 

  4. Saravanakumar K, Shanmugam S, Varukattu NB, MubarakAli D, Kathiresan K, Wang M-H. Biosynthesis and characterization of copper oxide nanoparticles from indigenous fungi and its effect of photothermolysis on human lung carcinoma. J Photochem Photobiol B. 2019;190:103–9.

    Article  CAS  PubMed  Google Scholar 

  5. Chen L, Zhang Q-Y, Jia M, Ming Q-L, Yue W, Rahman K, et al. Endophytic fungi with antitumor activities: their occurrence and anticancer compounds. Crit Rev Microbiol. 2016;42(3):454–73.

    CAS  PubMed  Google Scholar 

  6. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. 2018;68(6):394–424.

    PubMed  Google Scholar 

  7. Yan J-K, Pei J-J, Ma H-L, Wang Z-B, Liu Y-S. Advances in antitumor polysaccharides from Phellinus sensu lato: production, isolation, structure, antitumor activity, and mechanisms. Crit Rev Food Sci Nutr. 2017;57(6):1256–69.

    Article  CAS  PubMed  Google Scholar 

  8. Masuda Y, Nakayama Y, Tanaka A, Naito K, Konishi M. Antitumor activity of orally administered maitake α-glucan by stimulating antitumor immune response in murine tumor. PLoS ONE. 2017;12(3):e0173621.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Li Q-Z, Zheng Y-Z, Zhou X-W. Fungal immunomodulatory proteins: characteristic, potential antitumor activities and their molecular mechanisms. Drug Discov Today. 2019;24(1):307–14.

    Article  CAS  PubMed  Google Scholar 

  10. Matuszewska A, Stefaniuk D, Jaszek M, Pięt M, Zając A, Matuszewski Ł, et al. Antitumor potential of new low molecular weight antioxidative preparations from the white rot fungus Cerrena unicolor against human colon cancer cells. Sci Rep. 2019;9(1):1–10.

    Article  CAS  Google Scholar 

  11. Ahmad MF. Ganoderma lucidum: a macro fungus with phytochemicals and their pharmacological properties. In: Ozturk M, Hakeem KR, editors. Plant and human health. vol. 2. Cham: Springer; 2019. pp. 491–515

    Chapter  Google Scholar 

  12. Rajamanikyam M, Vadlapudi V, Upadhyayula SM. Endophytic fungi as novel resources of natural therapeutics. Braz Arch Biol Technol. 2017;60:e17160542.

    Article  CAS  Google Scholar 

  13. Madhanraj R, Ravikumar K, Maya M, Illuri R, Venkatakrishna K, Rameshkumar K, et al. Evaluation of anti-microbial and anti-haemolytic activity of edible basidiomycetes mushroom fungi. J Drug Deliv Ther. 2019;9(1):132–5.

    Article  CAS  Google Scholar 

  14. Li W, Song K, Wang S, Zhang C, Zhuang M, Wang Y, et al. Anti-tumor potential of astragalus polysaccharides on breast cancer cell line mediated by macrophage activation. Mater Sci Eng C. 2019;98:685–95.

    Article  CAS  Google Scholar 

  15. Maehara S, Yamane C, Kitamura C, Hinokuma M, Hata T. High ophiobolin A production in endophytic fungus Bipolaris sp. associated with Datura metel. Nat Prod Res. 2019;33:1–3.

    Article  CAS  Google Scholar 

  16. Noh S, Choi E, Hwang C-H, Jung JH, Kim S-H, Kim B. Dietary compounds for targeting prostate cancer. Nutrients. 2019;11(10):2401.

    Article  CAS  PubMed Central  Google Scholar 

  17. Matuszewska A, Stefaniuk D, Jaszek M, Pięt M, Zając A, Matuszewski Ł, et al. Antitumor potential of new low molecular weight antioxidative preparations from the white rot fungus Cerrena unicolor against human colon cancer cells. Sci Rep. 2019;9:1975.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Vil VA, Terent’ev AO, Savidov N, Gloriozova TA, Poroikov VV, Pounina TA, et al. Hydroperoxy steroids and triterpenoids derived from plant and fungi: origin, structures and biological activities. J Steroid Biochem Mol Biol. 2019;190:76–87.

    Article  CAS  PubMed  Google Scholar 

  19. Wang C, Zhang W, Wong JH, Ng T, Ye X. Diversity of potentially exploitable pharmacological activities of the highly prized edible medicinal fungus Antrodia camphorata. Appl Microbiol Biotechnol. 2019;103(19):7843–67.

    Article  CAS  PubMed  Google Scholar 

  20. Yang X-Y, Niu W-R, Li R-T, Cui X-M, Liu J-K. Two new sesquiterpenes from cultures of the higher fungus Pholiota nameko. Nat Prod Res. 2019;33(14):1992–6.

    Article  CAS  PubMed  Google Scholar 

  21. Vannucci L, Krizan J, Sima P, Stakheev D, Caja F, Rajsiglova L, et al. Immunostimulatory properties and antitumor activities of glucans. Int J Oncol. 2013;43(2):357–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Janakiraman V, Govindarajan K, Magesh C. Biosynthesis of silver nanoparticles from endophytic fungi, and its cytotoxic activity. BioNanoScience. 2019;9(3):573–9.

    Article  Google Scholar 

  23. Mohseni MS, Khalilzadeh MA, Mohseni M, Hargalani FZ, Getso MI, Raissi V, et al. Green synthesis of Ag nanoparticles from pomegranate seeds extract and synthesis of Ag-Starch nanocomposite and characterization of mechanical properties of the films. Biocatal Agric Biotechnol. 2020;25:101569.

    Article  Google Scholar 

  24. Barabadi H, Mahjoub MA, Tajani B, Ahmadi A, Junejo Y, Saravanan M. Emerging theranostic biogenic silver nanomaterials for breast cancer: a systematic review. J Clust Sci. 2019;30(2):259–79.

    Article  CAS  Google Scholar 

  25. El-Kahky D, Attia M, Easa SM, Awad NM, Helmy EA. Biosynthesized of zinc oxide nanoparticles using Aspergillus terreus and their application as antitumor and antimicrobial activity. J Ecol Eng. 2019;8(3):90–100.

    Google Scholar 

  26. Peng C, Han B, Wang B, Zhao G, Yuan F, Zhao Y, et al. Therapy of prostate cancer by nanoyam polysaccharide. Int J Polym Sci. 2019;2019:1–5.

    Article  CAS  Google Scholar 

  27. Husseiny SM, Salah TA, Anter HA. Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef Univ J Basic Appl Sci. 2015;4(3):225–31.

    Article  Google Scholar 

  28. Benchamin D, Sreejai R, Sujitha S, Jensy Roshan F, Albert C, Rishad K. Anti-proliferative activity of L-Asparaginase enzyme from fungi on breast cancer. J Pharmacogn Phytochem. 2019;8(1):407–10.

    Google Scholar 

  29. Erden Y, Tekin S, Ceylan KBB, Tekin C, Kirbag S. Antioxidant, antimicrobial and anticancer activities of the aspergillin PZ and terphenyllin secondary metabolites: an in vitro study. Gazi Univ J Sci. 2019;32(3):792–800.

    Article  Google Scholar 

  30. Meng Q, Zhou X, Ran X, Yan S, Fu S. Microbial synthesis of anti-tumor agent oxysophoridine through one step by filamentous fungus. J Pharm Biopharm Res. 2019;1(2):48–52.

    Article  Google Scholar 

  31. Garrido-Rodríguez M, Ortea I, Calzado MA, Muñoz E, García V. SWATH proteomic profiling of prostate cancer cells identifies NUSAP1 as a potential molecular target for Galiellalactone. J Proteom. 2019;193:217–29.

    Article  CAS  Google Scholar 

  32. Antipova TV, Zaitsev KV, Oprunenko YF, Zherebker AY, Rystsov GK, Zemskova MY, et al. Austalides V and W, new meroterpenoids from the fungus Aspergillus ustus and their antitumor activities. Bioorg Med Chem Lett. 2019;29(22):126708.

    Article  CAS  PubMed  Google Scholar 

  33. Lee D, Lee W-Y, Jung K, Kwon YS, Kim D, Hwang GS, et al. The inhibitory effect of cordycepin on the proliferation of MCF-7 breast cancer cells, and its mechanism: an investigation using network pharmacology-based analysis. Biomolecules. 2019;9(9):414.

    Article  CAS  PubMed Central  Google Scholar 

  34. Chien R-C, Yen M-T, Mau J-L. Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells. Carbohyd Polym. 2016;138:259–64.

    Article  CAS  Google Scholar 

  35. Choromanska A, Kulbacka J, Rembialkowska N, Pilat J, Oledzki R, Harasym J, et al. Anticancer properties of low molecular weight oat beta-glucan—an in vitro study. Int J Biol Macromol. 2015;80:23–8.

    Article  CAS  PubMed  Google Scholar 

  36. Choromanska A, Kulbacka J, Harasym J, Oledzki R, Szewczyk A, Saczko J. High-and low-molecular weight oat beta-glucan reveals antitumor activity in human epithelial lung cancer. Pathol Oncol Res. 2018;24(3):583–92.

    Article  CAS  PubMed  Google Scholar 

  37. El-Kassem LA, Hawas UW, El-Souda S, Ahmed EF, El-Khateeb W, Fayad W. Anti-HCV protease potential of endophytic fungi and cytotoxic activity. Biocatal Agric Biotechnol. 2019;19:101170.

    Article  Google Scholar 

  38. Karaman M, Janjušević L, Jakovljević D, Šibul F, Pejin B. Anti-hydroxyl radical activity, redox potential and anti-AChE activity of Amanita strobiliformis polysaccharide extract. Nat Prod Res. 2019;33(10):1522–6.

    Article  CAS  PubMed  Google Scholar 

  39. Khan T, Date A, Chawda H, Patel K. Polysaccharides as potential anticancer agents—a review of their progress. Carbohydr Polym. 2019;210:412–28.

    Article  CAS  PubMed  Google Scholar 

  40. Li H, Cao K, Cong P, Liu Y, Cui H, Xue C. Structure characterization and antitumor activity of the extracellular polysaccharide from the marine fungus Hansfordia sinuosae. Carbohyd Polym. 2018;190:87–94.

    Article  CAS  Google Scholar 

  41. Liu X-C, Zhu Z-Y, Liu Y-L, Sun H-Q. Comparisons of the anti-tumor activity of polysaccharides from fermented mycelia and cultivated fruiting bodies of Cordyceps militaris in vitro. Int J Biol Macromol. 2019;130:307–14.

    Article  CAS  PubMed  Google Scholar 

  42. Qi C, Gao W, Guan D, Wang J, Liu M, Chen C, et al. Butenolides from a marine-derived fungus Aspergillus terreus with antitumor activities against pancreatic ductal adenocarcinoma cells. Bioorg Med Chem. 2018;26(22):5903–10.

    Article  CAS  PubMed  Google Scholar 

  43. Sun X, Zhao C, Pan W, Wang J, Wang W. Carboxylate groups play a major role in antitumor activity of Ganoderma applanatum polysaccharide. Carbohyd Polym. 2015;123:283–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sincere gratitude of all professors and students of parasitology and mycology at the School of Public Health at Tehran University of Medical Sciences.

Funding

Funding information is not applicable/no funding was received.

Author information

Authors and Affiliations

Authors

Contributions

OR, SSH, and KA conceived the research; MY, VR, HE, SK, BA, and AS were responsible for literature search, abstract and title screening, full-text review, and extraction of data. OR provided coordination and oversight; ASM, MM, and MM drafted the manuscript. OR, RA, and MG critically revised the manuscript.

Corresponding author

Correspondence to O. Raiesi.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare in this work.

Ethical approval

Not applicable; no human or animal subjects were directly involved in this research.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsaei, S., Getso, M., Ahmadikia, K. et al. Recent findings on the role of fungal products in the treatment of cancer. Clin Transl Oncol 23, 197–204 (2021). https://doi.org/10.1007/s12094-020-02428-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-020-02428-1

Keywords

Navigation