Skip to main content

Advertisement

Log in

p53 pathway activation by telomere attrition in X-DC primary fibroblasts occurs in the absence of ribosome biogenesis failure and as a consequence of DNA damage

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Dyskeratosis congenita (DC) is a rare inherited bone marrow failure syndrome with high clinical heterogeneity. Various mutations have been reported in DC patients, affecting genes that code for components of H/ACA ribonucleoproteins, proteins of the telomerase complex and components of the shelterin complex.

Objectives

We aim to clarify the role of ribosome biogenesis failure in senescence induction in X-DC since some studies in animal models have reported a decrease in ribosome biogenesis as a major role in the disease.

Methods

Dyskerin was depleted in normal human fibroblasts by expressing two DKC1 shRNAs. Common changes in gene expression profile between these dyskerin-depleted cells and X-DC fibroblasts were analyzed.

Results

Dyskerin depletion induced early activation of the p53 pathway probably secondary to ribosome biogenesis failure. However, the p53 pathway in the fibroblasts from X-DC patients was activated only after an equivalent number of passes to AD-DC fibroblasts, in which telomere attrition in each division rendered shorter telomeres than control fibroblasts. Indeed, no induction of DNA damage was observed in dyskerin-depleted fibroblasts in contrast to X-DC or AD-DC fibroblasts suggesting that DNA damage induced by telomere attrition is responsible for p53 activation in X-DC and AD-DC fibroblasts. Moreover, p53 depletion in senescent DC fibroblasts rescued their proliferative capacity and reverted the morphological changes produced after prolonged culture.

Conclusions

Our data indicate that ribosome biogenesis do not seem to play an important role in dyskeratosis congenita, conversely increasing DNA damage and activation of p53 pathway triggered by telomere shortening is the main activator of cell senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bessler M, Wilson DB, Mason PJ. Dyskeratosis congenita. FEBS Lett. 2010;584(17):3831–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Savage SA, Blanche P. Alter dyskeratosis congenita. Hematol Oncol Clin North Am. 2009;23(2):215–31. doi:10.1016/j.hoc.2009.01.003.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Dokal I, Vulliamy T, Mason P, Bessler M. Clinical utility gene card for: dyskeratosis congenita. Eur J Hum Genet. 2011;19:231–5. doi:10.1038/ejhg.2011.90.

    Article  Google Scholar 

  4. Vulliamy T, Marrone A, Szydlo R, Walne A, Mason PJ, Dokal I. Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat Genet. 2004;36(5):447–9.

    Article  CAS  PubMed  Google Scholar 

  5. Yamaguchi H, Calado RT, Ly H, Kajigaya S, Baerlocher GM, Chanock SJ, et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med. 2005;352(14):1413–24.

    Article  CAS  PubMed  Google Scholar 

  6. Parry EM, Alder JK, Lee SS, Phillips JA, Loyd JE, Duggal P, et al. Decreased dyskerin levels as a mechanism of telomere shortening in X-linked dyskeratosis congenita. J Med Genet. 2011;48(5):327–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Ge J, Rudnick DA, He J, Crimmins DL, Ladenson JH, Bessler M, et al. Dyskerin ablation in mouse liver inhibits rRNA processing and cell division. Mol Cell Biol. 2010;30(2):413–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Ruggero D, Grisendi S, Piazza F, Rego E, Mari F, Rao PH, et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science. 2003;299(5604):259–62.

    Article  CAS  PubMed  Google Scholar 

  9. Pereboom TC, van Weele LJ, Bondt A, MacInnes AW. A zebrafish model of dyskeratosis congenita reveals hematopoietic stem cell formation failure resulting from ribosomal protein-mediated p53 stabilization. Blood. 2011;118(20):5458–65.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Morimoto K, Danilova N, Zhang B, Lin S. Zebrafish models for dyskeratosis congenita reveal critical roles of p53 activation contributing to hematopoietic defects through RNA processing. PLoS One. 2012;7(1):e30188.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Panic L, Montagne J, Cokaric M, Volarevic S. S6-Haploinsufficiency activates the p53 tumor suppressor. Cell Cycle. 2007;6(1):20–4.

    Article  CAS  PubMed  Google Scholar 

  12. Carrillo J, Martínez P, Solera J, Moratilla C, González A, Manguán-García C, et al. High resolution melting analysis for the identification of novel mutations in DKC1 and TERT genes in patients with dyskeratosis congenita. Blood Cells Mol Dis. 2012;49(3–4):140–6.

    Article  CAS  PubMed  Google Scholar 

  13. Nagasawa H, Little JB. Suppression of cytotoxic effect of mitomycin-C by superoxide dismutase in Fanconi’s anemia and dyskeratosis congenita fibroblasts. Carcinogenesis. 1983;4:795–9.

    Article  CAS  PubMed  Google Scholar 

  14. Heiss NS, Knight SW, Vulliamy TJ, Klauck SM, Wiemann S, Mason PJ, et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet. 1998;19(1):32–8.

    Article  CAS  PubMed  Google Scholar 

  15. Wong JMY, Kyasa MJ, Hutchins L, Collins K. Telomerase RNA deficiency in peripheral blood mononuclear cells in X-linked dyskeratosis congenita. Hum Genet. 2004;115:448–55.

    Article  CAS  PubMed  Google Scholar 

  16. d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature. 2003;426:194–8.

    Article  PubMed  Google Scholar 

  17. Chan SS, Chang S. Defending the end zone: studying the players involved in protecting chromosome ends. FEBS Lett. 2010;584(17):3773–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. d’Adda di Fagagna F, Teo SH, Jackson SP. Functional links between telomeres and proteins of the DNA-damage response. Genes Dev. 2004;18:1781–99.

    Article  PubMed  Google Scholar 

  19. Vulliamy T, Beswick R, Kirwan M, Marrone A, Digweed M, Walne A, et al. Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proc Natl Acad Sci. 2008;105(23):8073–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Walne AJ, Vulliamy T, Marrone A, Beswick R, Kirwan M, Masunari Y, et al. Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. Hum Mol Genet. 2007;16(13):1619–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Jullien L, Mestre M, Roux P, Gire V. Eroded human telomeres are more prone to remain uncapped and to trigger a G2 checkpoint response. Nucleic Acids Res. 2013;41(2):900–11. doi:10.1093/nar/gks1121 (Epub 2012 Nov 27).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Machado-Pinilla R, Sanchez-Perez I, Ramon Murguia J, Sastre L, Perona R. A dyskerin motif reactivates telomerase activity in X-linked dyskeratosis congenita and in telomerase-deficient human cells. Blood. 2008;111(5):2606–14.

    Article  CAS  PubMed  Google Scholar 

  23. Westin ER, Aykin-Burns N, Buckingham EM, Spitz DR, Goldman FD, Klingelhutz AJ. The p53/p21WAF/CIP pathway mediates oxidative stress and senescence in dyskeratosis congenita cells with telomerase insufficiency. Antioxid Redox Signal. 2011;14(6):985–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants: 11/00949 from FIS and Fundación Ramón Areces. C. Manguán-García and J. Carrillo were supported by CIBER de Enfermedades Raras. We gratefully acknowledge to Leandro Sastre for helpful discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Perona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrillo, J., González, A., Manguán-García, C. et al. p53 pathway activation by telomere attrition in X-DC primary fibroblasts occurs in the absence of ribosome biogenesis failure and as a consequence of DNA damage. Clin Transl Oncol 16, 529–538 (2014). https://doi.org/10.1007/s12094-013-1112-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-013-1112-3

Keywords

Navigation