Skip to main content

Advertisement

Log in

The EMT signaling pathways in endometrial carcinoma

  • Educational Series – BLUE SERIES
  • Advances in Translational Oncology
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Endometrial cancer (EC) is the most common gynecologic malignancy of the female genital tract and the fourth most common neoplasia in women. In EC, myometrial invasion is considered one of the most important prognostic factors. For this process to occur, epithelial tumor cells need to undergo an epithelial to mesenchymal transition (EMT), either transiently or stably, and to differing degrees. This process has been extensively described in other types of cancer but has been poorly studied in EC. In this review, several features of EMT and the main molecular pathways responsible for triggering this process are investigated in relation to EC. The most common hallmarks of EMT have been found in EC, either at the level of E-cadherin loss or at the induction of its repressors, as well as other molecular alterations consistent with the mesenchymal phenotype-like L1CAM and BMI-1 up-regulation. Pathways including progesterone receptor, TGFβ, ETV5 and microRNAs are deeply related to the EMT process in EC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bokhman JV (1983) Two pathogenetic types of endometrial carcinoma. Gynecol Oncol 15:10–17

    Article  PubMed  CAS  Google Scholar 

  2. Zannoni GF, Scambia G, Gallo D (2011) The dualistic model of endometrial cancer: the challenge of classifying grade 3 endometrioid carcinoma. Gynecol Oncol. doi:10.1016/j.ygyno.2011.09.036

  3. Llauradó M et al (2011) Molecular bases of endometrial cancer: new roles for new actors in the diagnosis and the therapy of the disease. Mol Cell Endocrinol. doi:10.1016/j.mce.2011.10.003

  4. Amant F et al (2005) Endometrial cancer. Lancet 366:491–505

    Article  PubMed  Google Scholar 

  5. Yeramian A et al (2012) Endometrial carcinoma: molecular alterations involved in tumor development and progression. Oncogene. doi:10.1038/onc.2012.76

  6. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  7. Abal M et al (2007) Molecular determinants of invasion in endometrial cancer. Clin Transl Oncol 9:272–277

    Article  PubMed  CAS  Google Scholar 

  8. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  9. Moreno-Bueno G, Portillo F, Cano A (2008) Transcriptional regulation of cell polarity in EMT and cancer. Oncogene 27:6958–6969

    Article  PubMed  CAS  Google Scholar 

  10. Yang J, Weinberg RA (2008) Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14:818–829

    Article  PubMed  CAS  Google Scholar 

  11. Thiery JP, Morgan M (2004) Breast cancer progression with a Twist. Nat Med 10:777–778

    Article  PubMed  CAS  Google Scholar 

  12. Kang Y, Massague J (2004) Epithelial–mesenchymal transitions: twist in development and metastasis. Cell 118:277–279

    Article  PubMed  CAS  Google Scholar 

  13. Mueller MM, Fusenig NE (2004) Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849

    Article  PubMed  CAS  Google Scholar 

  14. Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337

    Article  PubMed  CAS  Google Scholar 

  15. Barrallo-Gimeno A, Nieto MA (2005) The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132:3151–3161

    Article  PubMed  CAS  Google Scholar 

  16. De Craene B, van Roy F, Berx G (2005) Unraveling signaling cascades for the Snail family of transcription factors. Cell Signal 17:535–547

    Article  PubMed  Google Scholar 

  17. Huber M, Kraut N, Beug H (2005) Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr Opin Cell Biol 17:548–558

    Article  PubMed  CAS  Google Scholar 

  18. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142

    Article  PubMed  CAS  Google Scholar 

  19. Micalizzi D, Farabaugh S, Ford H (2010) Epithelial–mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 15:117–134

    Article  PubMed  Google Scholar 

  20. Hurt EM, Saykally JN, Anose BM, Kalli KR, Sanders MM (2008) Expression of the ZEB1 (deltaEF1) transcription factor in human: additional insights. Mol Cell Biochem 318:89–99

    Article  PubMed  CAS  Google Scholar 

  21. Singh M et al (2008) ZEB1 expression in type I vs type II endometrial cancers: a marker of aggressive disease. Mod Pathol 21:912–923

    Article  PubMed  CAS  Google Scholar 

  22. Kyo S et al (2006) High Twist expression is involved in infiltrative endometrial cancer and affects patient survival. Hum Pathol 37:431–438

    Article  PubMed  CAS  Google Scholar 

  23. Blechschmidt K et al (2007) The E-cadherin repressor snail plays a role in tumor progression of endometrioid adenocarcinomas. Diagn Mol Pathol 16:222–228

    Article  PubMed  CAS  Google Scholar 

  24. Shih H-C et al (2004) Immunohistochemical expression of E-cadherin and beta-catenin in the normal and malignant human endometrium: an inverse correlation between E-cadherin and nuclear beta-catenin expression. Anticancer Res 24:3843–3850

    PubMed  CAS  Google Scholar 

  25. Scholten AN, Aliredjo R, Creutzberg CL, Smit VTHB (2006) Combined E-cadherin, alpha-catenin, and beta-catenin expression is a favorable prognostic factor in endometrial carcinoma. Int J Gynecol Cancer 16:1379–1385

    Article  PubMed  CAS  Google Scholar 

  26. Sakuragi N et al (1994) Decreased E-cadherin expression in endometrial carcinoma is associated with tumor dedifferentiation and deep myometrial invasion. Gynecol Oncol 53:183–189

    Article  PubMed  CAS  Google Scholar 

  27. Moreno-Bueno G et al (2003) Abnormalities of E- and P-cadherin and catenin (beta-, gamma-catenin, and p120ctn) expression in endometrial cancer and endometrial atypical hyperplasia. J Pathol 199:471–478

    Article  PubMed  CAS  Google Scholar 

  28. Stefansson IM, Salvesen HB, Akslen LA (2004) Prognostic impact of alterations in P-cadherin expression and related cell adhesion markers in endometrial cancer. J Clin Oncol 22:1242–1252

    Article  PubMed  CAS  Google Scholar 

  29. Mell LK et al (2004) Prognostic significance of E-cadherin protein expression in pathological stage I–III endometrial cancer. Clin Cancer Res 10:5546–5553

    Article  PubMed  CAS  Google Scholar 

  30. Leblanc M et al (2001) Alteration of CD44 and cadherins expression: possible association with augmented aggressiveness and invasiveness of endometrial carcinoma. Virchows Arch 438:78–85

    Article  PubMed  CAS  Google Scholar 

  31. Huszar M et al (2010) Up-regulation of L1CAM is linked to loss of hormone receptors and E-cadherin in aggressive subtypes of endometrial carcinomas. J Pathol 220:551–561

    Article  PubMed  CAS  Google Scholar 

  32. Pfeifer M et al (2010) L1CAM expression in endometrial carcinomas is regulated by usage of two different promoter regions. BMC Mol Biol 11:64

    Article  PubMed  Google Scholar 

  33. Lee H et al(2012) Immunohistochemical analysis of polycomb group protein expression in advanced gastric cancer. Hum Pathol. doi:10.1016/j.humpath.2011.12.019

  34. Vonlanthen S et al (2001) The bmi-1 oncoprotein is differentially expressed in non-small cell lung cancer and correlates with INK4A-ARF locus expression. Br J Cancer 84:1372–1376

    Article  PubMed  CAS  Google Scholar 

  35. Guo B-H et al (2011) Bmi-1 promotes invasion and metastasis, and its elevated expression is correlated with an advanced stage of breast cancer. Mol. Cancer 10:10

    Article  PubMed  CAS  Google Scholar 

  36. Glinsky GV, Berezovska O, Glinskii AB (2005) Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 115:1503–1521

    Article  PubMed  CAS  Google Scholar 

  37. Zhang F, Sui L, Xin T (2008) Correlations of BMI-1 expression and telomerase activity in ovarian cancer tissues. Exp Oncol 30:70–74

    PubMed  CAS  Google Scholar 

  38. Honig A et al (2010) Overexpression of polycomb protein BMI-1 in human specimens of breast, ovarian, endometrial and cervical cancer. Anticancer Res 30:1559–1564

    PubMed  CAS  Google Scholar 

  39. Dong P et al (2011) MicroRNA-194 inhibits epithelial to mesenchymal transition of endometrial cancer cells by targeting oncogene BMI-1. Mol Cancer 10:99

    Article  PubMed  CAS  Google Scholar 

  40. Stewart CJR, Little L (2009) Immunophenotypic features of MELF pattern invasion in endometrial adenocarcinoma: evidence for epithelial–mesenchymal transition. Histopathology 55:91–101

    Article  PubMed  Google Scholar 

  41. Hanekamp EE et al (2005) Differences in invasive capacity of endometrial cancer cell lines expressing different progesterone receptor isotypes: possible involvement of cadherins. J Soc Gynecol Invest 12:278–284

    Article  CAS  Google Scholar 

  42. Dai D, Wolf DM, Litman ES, White MJ, Leslie KK (2002) Progesterone inhibits human endometrial cancer cell growth and invasiveness: down-regulation of cellular adhesion molecules through progesterone B receptors. Cancer Res 62:881–886

    PubMed  CAS  Google Scholar 

  43. Hanekamp EE et al (2002) Loss of progesterone receptor may lead to an invasive phenotype in human endometrial cancer. Eur J Cancer 38(Suppl 6):S71–S72

    Article  PubMed  CAS  Google Scholar 

  44. Van der Horst PH et al (2012) Progesterone inhibits epithelial-to-mesenchymal transition in endometrial cancer. PLoS One 7(1):e30840

    Google Scholar 

  45. Fujita N et al (2003) MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell 113:207–219

    Article  PubMed  CAS  Google Scholar 

  46. Dandachi N et al (2001) Co-expression of tenascin-C and vimentin in human breast cancer cells indicates phenotypic transdifferentiation during tumour progression: correlation with histopathological parameters, hormone receptors, and oncoproteins. J Pathol 193:181–189

    Article  PubMed  CAS  Google Scholar 

  47. Ehrlich CE, Young PC, Stehman FB, Sutton GP, Alford WM (1988) Steroid receptors and clinical outcome in patients with adenocarcinoma of the endometrium. Am J Obstet Gynecol 158:796–807

    PubMed  CAS  Google Scholar 

  48. Jeon Y-T et al (2006) Steroid receptor expressions in endometrial cancer: clinical significance and epidemiological implication. Cancer Lett 239:198–204

    Article  PubMed  CAS  Google Scholar 

  49. Thigpen JT et al (1999) Oral medroxyprogesterone acetate in the treatment of advanced or recurrent endometrial carcinoma: a dose-response study by the Gynecologic Oncology Group. J Clin Oncol 17:1736–1744

    PubMed  CAS  Google Scholar 

  50. Hanekamp EE et al (2003) Consequences of loss of progesterone receptor expression in development of invasive endometrial cancer. Clin Cancer Res 9:4190–4199

    PubMed  CAS  Google Scholar 

  51. Wang Y et al (2009) Progesterone inhibition of Wnt/beta-catenin signaling in normal endometrium and endometrial cancer. Clin Cancer Res 15:5784–5793

    Article  PubMed  CAS  Google Scholar 

  52. Massagué J (2008) TGFbeta in Cancer. Cell 134:215–230

    Article  PubMed  Google Scholar 

  53. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signaling. Nature 425:577–584

    Article  PubMed  CAS  Google Scholar 

  54. Parekh TV et al (2002) Transforming growth factor beta signaling is disabled early in human endometrial carcinogenesis concomitant with loss of growth inhibition. Cancer Res 62:2778–2790

    PubMed  CAS  Google Scholar 

  55. Muinelo-Romay L et al (2011) High-risk endometrial carcinoma profiling identifies TGF-β1 as a key factor in the initiation of tumor invasion. Mol Cancer Ther 10:1357–1366

    Article  PubMed  CAS  Google Scholar 

  56. Lei X, Wang L, Yang J, Sun L-Z (2009) TGFbeta signaling supports survival and metastasis of endometrial cancer cells. Cancer Manag Res 2009:15–24

    PubMed  Google Scholar 

  57. de Launoit Y et al (2006) The Ets transcription factors of the PEA3 group: transcriptional regulators in metastasis. Biochim Biophys Acta 1766:79–87

    PubMed  Google Scholar 

  58. Graves BJ, Petersen JM (1998) Specificity within the ets family of transcription factors. Adv Cancer Res 75:1–55

    Article  PubMed  CAS  Google Scholar 

  59. Planaguma J et al (2005) Up-regulation of ERM/ETV5 correlates with the degree of myometrial infiltration in endometrioid endometrial carcinoma. J Pathol 207:422–429

    Article  PubMed  CAS  Google Scholar 

  60. Llauradó M et al (2012) ETV5 transcription factor is overexpressed in ovarian cancer and regulates cell adhesion in ovarian cancer cells. Int J Cancer 130:1532–1543

    Article  PubMed  Google Scholar 

  61. Colas E et al (2012) ETV5 cooperates with LPP as a sensor of extracellular signals and promotes EMT in endometrial carcinomas. Oncogene. doi:10.1038/onc.2011.632

  62. Monge M et al (2007) ERM/ETV5 up-regulation plays a role during myometrial infiltration through matrix metalloproteinase-2 activation in endometrial cancer. Cancer Res 67:6753–6759

    Article  PubMed  CAS  Google Scholar 

  63. Monge M et al (2009) Proteomic approach to ETV5 during endometrial carcinoma invasion reveals a link to oxidative stress. Carcinogenesis 30:1288–1297

    Article  PubMed  CAS  Google Scholar 

  64. Monge M et al (2009) Subtractive proteomic approach to the endometrial carcinoma invasion front. J Proteome Res 8:4676–4684

    Article  PubMed  CAS  Google Scholar 

  65. Ebert MS, Sharp PA (2012) Roles for MicroRNAs in conferring robustness to biological processes. Cell 149:515–524

    Article  PubMed  CAS  Google Scholar 

  66. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  67. Lujambio A, Lowe SW (2012) The microcosmos of cancer. Nature 482:347–355

    Article  PubMed  CAS  Google Scholar 

  68. Castilla MA et al (2011) Micro-RNA signature of the epithelial–mesenchymal transition in endometrial carcinosarcoma. J Pathol 223:72–80

    Article  PubMed  CAS  Google Scholar 

  69. Kong W et al (2008) MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 28:6773–6784

    Article  PubMed  CAS  Google Scholar 

  70. Howe EN, Cochrane DR, Richer JK (2011) Targets of miR-200c mediate suppression of cell motility and anoikis resistance. Breast Cancer Res 13:R45

    Article  PubMed  CAS  Google Scholar 

  71. Cano A, Nieto MA (2008) Non-coding RNAs take centre stage in epithelial-to-mesenchymal transition. Trends Cell Biol 18:357–359

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Lisa Piccione for correction of the manuscript. This work has been supported by the Spanish Ministry of Science and Innovation (SAF 2005-06771; SAF 2008-03996; SAF 2010-10635-E; SAF2011-26548), CENIT Program (CENIT/01/2006) and RTICC Program (RTICC RD06/0020/0058 and RD06/0020/1034), the Catalan Institute of Health and the Department of Universities and Research, Catalan Government (2009SGR00487, 2005SGR00553), the ACCIO Program (RDITSCON07-1-0001), the Foundation La Marato de TV3 (Grant 050431), the IV Grant Fundació Santiago Dexeus Font for Clinical Investigation Projects 2009, the National Programme of Biotechnology (FIT-010000-2007-26), the Asociación Española Contra el Cáncer (AECC) and the European Commission Program Fondo Europeo de Desarrollo Regional (FEDER).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaume Reventos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colas, E., Pedrola, N., Devis, L. et al. The EMT signaling pathways in endometrial carcinoma. Clin Transl Oncol 14, 715–720 (2012). https://doi.org/10.1007/s12094-012-0866-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-012-0866-3

Keywords

Navigation