Skip to main content

Advertisement

Log in

FP3: a novel VEGF blocker with antiangiogenic effects in vitro and antitumour effects in vivo

  • Research Articles
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Vascular endothelial growth factor (VEGF) is a critical promoter of blood vessel growth during embryonic development and neovascularisation in tumours. VEGF serves as a logical target for antiangiogenic cancer therapy because of its fundamental role in tumour angiogenesis. This study is to investigate the inhibitory effects of FP3, a novel VEGF blocker, on angiogenesis in vitro and tumour growth in vivo.

Methods

The inhibitory effects of FP3 on angiogenesis in vitro were evaluated by using human umbilical vein endothelial cells (HUVECs) and rat aortic ring. The inhibitory effects of FP3 on tumour growth and angiogenesis in vivo were evaluated in a human non-small-cell lung cancer (NSCLC) cell line A549 tumour xenograft model with the methods of tumour growth regression assay and immunohistochemical staining, respectively.

Results

In experiments with HUVECs, FP3 inhibited cell proliferation and migration. In rat aortic ring assay, FP3 suppressed VEGF-induced vessel sprouting. In tumour growth regression assay, FP3 significantly blocked the growth of A549 tumour in the subcutaneous tumour xenograft model and dramatically decreased the vessel density of tumour.

Conclusions

FP3 has excellent inhibitory effects on tumour angiogenesis both in vitro and in vivo, therefore it could be used as an effective antiangiogenic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  PubMed  CAS  Google Scholar 

  2. Rafii S, Lyden D, Benezra R et al (2002) Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2:826–835

    Article  PubMed  CAS  Google Scholar 

  3. Shibuya M (2001) Structure and function of VEGF/VEGF-receptor system involved in angiogenesis. Cell Struct Funct 26:25–35

    Article  PubMed  CAS  Google Scholar 

  4. Giaccone G (2007) The potential of antiangiogenic therapy in non-small cell lung cancer. Clin Cancer Res 13:1961–1970

    Article  PubMed  CAS  Google Scholar 

  5. Teng LS, Jin KT, He KF et al (2010) Advances in combination of antiangiogenic agents targeting VEGF-binding and conventional chemotherapy and radiation for cancer treatment. J Chin Med Assoc 73:281–288

    Article  PubMed  CAS  Google Scholar 

  6. Teng LS, Jin KT, He KF et al (2010) Clinical applications of VEGF-trap (aflibercept) in cancer treatment. J Chin Med Assoc 73:449–456

    Article  PubMed  CAS  Google Scholar 

  7. Zhang M, Zhang J, Yan M et al (2008) Recombinant anti-vascular endothelial growth factor fusion protein efficiently suppresses choroidal neovascularization in monkeys. Mol Vis 14:37–49

    PubMed  CAS  Google Scholar 

  8. Zhang M, Yu D, Yang C et al (2009) The pharmacology study of a new recombinant human VEGF receptor-fc fusion protein on experimental choroidal neovascularization. Pharm Res 26:204–210

    Article  PubMed  CAS  Google Scholar 

  9. Kim JH, Kim JH, Yu YS et al (2008) Antiangiogenic effect of deguelin on choroidal neovascularization. J Pharmacol Exp Ther 324:643–647

    Article  PubMed  CAS  Google Scholar 

  10. Mountain DJ, Singh M, Singh K (2008) Downregulation of VEGF-D expression by interleukin-1beta in cardiac microvascular endothelial cells is mediated by MAPKs and PKCalpha/beta1. J Cell Physiol 215:337–343

    Article  PubMed  CAS  Google Scholar 

  11. Nicosia RF, Ottinetti A (1990) Modulation of microvascular growth and morphogenesis by reconstituted basement membrane gel in three-dimensional cultures of rat aorta: a comparative study of angiogenesis in matrigel, collagen, fibrin, and plasma clot. In Vitro Cell Dev Biol 26:119–128

    Article  PubMed  CAS  Google Scholar 

  12. Staton CA, Stribbling SM, Tazzyman S et al (2004) Current methods for assaying angiogenesis in vitro and in vivo. Int J Exp Pathol 85:233–248

    Article  PubMed  CAS  Google Scholar 

  13. Kim ES, Serur A, Huang J et al (2002) Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. Proc Natl Acad Sci U S A 99:11399–11404

    Article  PubMed  CAS  Google Scholar 

  14. Dickson PV, Hamner JB, Sims TL et al (2007) Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin Cancer Res 13:3942–3950

    Article  PubMed  CAS  Google Scholar 

  15. Kamat AA, Merritt WM, Coffey D et al (2007) Clinical and biological significance of vascular endothelial growth factor in endometrial cancer. Clin Cancer Res 13:7487–7495

    Article  PubMed  CAS  Google Scholar 

  16. Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    Article  PubMed  CAS  Google Scholar 

  17. Reck M, von Pawel J, Zatloukal P et al (2009) Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol 27:1227–1234

    Article  PubMed  CAS  Google Scholar 

  18. Yang JC, Haworth L, Sherry RM et al (2003) A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349:427–434

    Article  PubMed  CAS  Google Scholar 

  19. Yang JC (2004) Bevacizumab for patients with metastatic renal cancer: an update. Clin Cancer Res 10:6367S–6370S

    Article  PubMed  CAS  Google Scholar 

  20. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  21. McMahon G (2000) VEGF receptor signaling in tumor angiogenesis. Oncologist 5:3–10

    Article  PubMed  CAS  Google Scholar 

  22. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25:581–611

    Article  PubMed  CAS  Google Scholar 

  23. Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027

    Article  PubMed  CAS  Google Scholar 

  24. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisong Teng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, K., He, K., Teng, F. et al. FP3: a novel VEGF blocker with antiangiogenic effects in vitro and antitumour effects in vivo . Clin Transl Oncol 13, 878–884 (2011). https://doi.org/10.1007/s12094-011-0749-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-011-0749-z

Keywords

Navigation