Skip to main content

Advertisement

Log in

Breast cancer stem cell hypothesis: clinical relevance (answering breast cancer clinical features)

  • Educational Series
  • Molecular and Cellular Biology of Cancer
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

The cancer stem cells hypothesis arises from observation of normal tissue hierarchy and the demonstration of stem cells in normal tissues. Scientists continue to debate whether the putative cancer cells derive from the transformation of normal tissue stem cells or from more differentiated cells. The existence of a subpopulation of tumour cells with stem-cell-like characteristics, including very slow replication and resistance to standard chemotherapy, posses a novel therapeutic challenge. This review summarises the state of development of normal and cancer breast cells and the clinical and therapeutic relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea - a paradigm shift. Cancer Res 66:1883–1890

    Article  CAS  PubMed  Google Scholar 

  2. Cicalese A, Bonizzi G, Pasi CE et al (2009) The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138:1083–1095

    Article  CAS  PubMed  Google Scholar 

  3. Stingl J, Eirew P, Ricketson I et al (2006) Purifi cation and unique properties of mammary epithelial stem cells. Nature 439:993–997

    CAS  PubMed  Google Scholar 

  4. Dontu G, Abdallah WM, Foley JM et al (2003) In vitro propagation and transcriptional profi ling of human mammary stem/progenitor cells. Genes Dev 17:1253–1270

    Article  CAS  PubMed  Google Scholar 

  5. Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L et al (2007) Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol 177:87–101

    Article  CAS  PubMed  Google Scholar 

  6. Shackleton M, Vaillant F, Simpson KJ et al (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88

    Article  CAS  PubMed  Google Scholar 

  7. Vaillant F, Asselin-Labat ML, Shackleton M et al (2007) The emerging picture of the mouse mammary stem cell. Stem Cell Rev 3:114–123

    Article  PubMed  Google Scholar 

  8. Dontu G, Abdallah WM, Foley JM et al (2003) In vitro propagation and transcriptional profi ling of human mammary stem/progenitor cells. Genes Dev 17:1253–1270

    Article  CAS  PubMed  Google Scholar 

  9. Liu S, Dontu G, Mantle ID et al (2006) Hedgehog signalling and BMI-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063–6071

    Article  CAS  PubMed  Google Scholar 

  10. César Cobaleda C, Cruz JJ, González-Sarmiento R et al (2008) The emerging picture of human breast cancer: as a stem cell-based disease. Stem Cell Rev 4:67–79

    Article  PubMed  Google Scholar 

  11. Stingl J, Caldas C (2007) Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis. Nat Rev Cancer 7:791–799

    Article  CAS  PubMed  Google Scholar 

  12. Li Y, Welm B, Podsypanina K et al (2003) Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci U S A 100:15853–15858

    Article  CAS  PubMed  Google Scholar 

  13. Russo J, Tay LK, Russo IH (1982) Differentiation of the mammary gland and susceptibility to carcinogenesis. Breast Cancer Res Treat 2:5–73

    Article  CAS  PubMed  Google Scholar 

  14. Liu S, Ginestier C, Charafe-Jauffret E et al (2008) BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci USA 105:1680–1685

    Article  CAS  PubMed  Google Scholar 

  15. Holst CR, Nuovo GJ, Esteller M et al (2003) Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia. Cancer Res 63:1596–1601

    CAS  PubMed  Google Scholar 

  16. Polyak K (2007) Breast cancer stem cells: a case of mistaken identity? Stem Cell Rev 3(2):107–109

    Article  PubMed  Google Scholar 

  17. Ponti D, Costa A, Zaffaroni N et al (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511

    Article  CAS  PubMed  Google Scholar 

  18. Kim M, Turnquist H, Jackson J et al (2002) The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin Cancer Res 8:22–28

    CAS  PubMed  Google Scholar 

  19. Ginestier C, Hur MH, Charafe-Jauffret E et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567

    Article  CAS  PubMed  Google Scholar 

  20. Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identifi cation of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988

    Article  CAS  PubMed  Google Scholar 

  21. Pece S, Tosoni D, Confalonieri S et al (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140:62–73

    Article  CAS  PubMed  Google Scholar 

  22. Blau HM, Brazelton TR, Weimann JM (2001) The evolving concept of a stem cell: entity or function? Cell 105:829–841

    Article  CAS  PubMed  Google Scholar 

  23. Gonzalez-Sarmiento R, Perez-Losada J (2008) Breast cancer as a stem cell disease. Curr Stem Cell Res Ther 3:55–65

    Article  CAS  PubMed  Google Scholar 

  24. Li X, Lewis MT, Huang J et al (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100(9):67

    Google Scholar 

  25. Bunting KD, Lindahl R, Townsend AJ (1994) Oxazaphosphorine-specifi c resistance in human MCF-7 breast carcinoma cell lines expressing transfected rat class 3 aldehyde dehydrogenase. J Biol Chem 269:23197–23203

    CAS  PubMed  Google Scholar 

  26. Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(-/low)/CD44+ breast cancerinitiating cells to radiation. J Natl Cancer Inst 98:1777–1785

    Article  PubMed  Google Scholar 

  27. Koji Morimoto, Seung Jin Kim, Tomonori Tanei et al (2009) Stem cell marker aldehyde dehydrogenase 1-positive breast cancers are characterized by negative estrogen receptor, positive human epidermal growth factor receptor type 2, and high Ki67 expression. Cancer Sci 100:1062–1068

    Article  CAS  PubMed  Google Scholar 

  28. Resetkova E, Reis-Filho J, Jain R et al (2009) Prognostic impact of ALDH1 in breast cancer: a story of stem cells and tumor microenvironment. Breast Cancer Res Treat DOI 10.1007/s10549-009-0619-3

  29. Tomonori Tanei, Koji Morimoto, Kenzo Shimazu et al (2009) Association of breast cancer stem cells identifi ed by aldehyde dehydrogenase 1 expression with resistance to sequential paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res 15(12):4234–4241

    Article  Google Scholar 

  30. Korkaya H, Paulson A, Iovino F et al (2008) HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 27:6120–6130

    Article  CAS  PubMed  Google Scholar 

  31. Li X, Lewis MT, Huang J et al (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100(9):672

    Article  CAS  PubMed  Google Scholar 

  32. Nickoloff BJ, Osborne BA, Miele L (2003) Notch signalling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene 22:6598–6608

    Article  CAS  PubMed  Google Scholar 

  33. Hatsell S, Frost AR (2007) Hedgehog signaling in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 12:163–173

    Article  PubMed  Google Scholar 

  34. Saal LH, Gruvberger-Saal SK, Persson C et al (2008) Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair. Nat Genet 40:102–107

    Article  CAS  PubMed  Google Scholar 

  35. Wang W, El-Deiry WS (2008) Restoration of p53 to limit tumor growth. Curr Opin Oncol 20:90–96

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuria Rodríguez Salas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez Salas, N., González González, E. & Gamallo Amat, C. Breast cancer stem cell hypothesis: clinical relevance (answering breast cancer clinical features). Clin Transl Oncol 12, 395–400 (2010). https://doi.org/10.1007/s12094-010-0526-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-010-0526-4

Keywords

Navigation