Skip to main content
Log in

Lack of correlation between DNA copy number and mRNA expression levels ofc-myc in γ-radiation-induced mouse thymic lymphomas by using quantitative real-time PCR

  • Research Articles
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

It is well documented that over-expression of thec-myc proto-oncogene occurs in the vast majority of mouse thymic lymphomas induced by γ-irradiation, evidencing the importance of this gene in T-cell lymphomagenesis. However, it remains unknown whether elevated levels ofc-myc expression are driven by extrac-myc copy numbers.

Materials and methods

Here we use a quantitative test on the basis of real-time PCR to determine the cellular copy number of c-myc in a set of 14 g-radiation-induced thymic lymphomas obtained from (C57BL/6J x BALB/cJ) F1 hybrid mice with increased mRNA c-myc expression.

Results

Since 5 out of 14 (35.7%) cases had no extra copy numbers of c-myc, gene amplification was obviously not the cause of c-myc over-expression in these tumours. In the remaining 9 tumours, c-myc over-expression was also accompanied with extra DNA copy numbers. Therefore, c-myc amplification might be a consequence of the genomic instability subsequent to the up-regulation of c-myc. However, linear regression analysis showed a lack of correlation between increasing DNA copy numbers and mRNA over expression of c-myc in these tumours (r =0.029, p=0.94).

Conclusion

De-regulation of c-myc does not necessarity imply amplification of this gene in these tumours. This report is, to our knowledge, the first one comparing c-myc amplification with expression in lymphomas of the T-cell lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vennstrom B, Sheiness D, Zabielski J, Bishop JM. Isolation and characterization ofc-myc, a cellular homolog of the oncogene (v-myc) of avian myelocytomatosis virus strain 29. J Virol. 1982;42:773–9.

    PubMed  CAS  Google Scholar 

  2. Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM. Humanc-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA. 1982;79:7824–7.

    Article  PubMed  CAS  Google Scholar 

  3. Spencer CA, Groudine M. Control ofc-myc regulation in normal and neoplastic cells. Adv Cancer Res. 1991;56:1–48.

    Article  PubMed  CAS  Google Scholar 

  4. McMorrow LE, Newcomb EW, Pellicer A. Identification of a specific marker chromosome early in tumour development in gamma-irradiated C57BL/6J mice. Leukemia. 1988;2:115–9.

    PubMed  CAS  Google Scholar 

  5. Muto M, Chen Y, Kubo E, Mita K. Analysis of early initiating event(s) in radiation-induced thymic lymphomagenesis. Jpn J Cancer Res. 1996;87:247–57.

    PubMed  CAS  Google Scholar 

  6. Vasmel WL, Matthews EA, Gillis CP, et al. Distinct chromosomal abnormalities in murine leukemia virus-induced T- and B-cell lymphomas. Int J Cancer. 1989;43:1112–9.

    Article  PubMed  CAS  Google Scholar 

  7. Gaudet F, Hodgson JG, Eden A, et al. Induction of tumours in mice by genomic hypomethylation. Science. 2003;300:489–92.

    Article  PubMed  CAS  Google Scholar 

  8. Liyanage M, Weaver Z, Barlow C, et al. Abnormal rearrangement within the alpha/delta T-cell receptor locus in lymphomas fromAtm-deficient mice. Blood. 2000;96:1940–6.

    PubMed  CAS  Google Scholar 

  9. Silva S, Babonits M, Wiener F, Klein G. Further studies on chromosome 15 trisomy in murine T-cell lymphomas: mapping of the relevant chromosome segment. Int J Cancer. 1988;41:738–43.

    Article  PubMed  CAS  Google Scholar 

  10. Banerjee M, Wiener F, Spira J, et al. Mapping of thec-myc, pvt-1 and immunoglobulin kappa genes in relation to the mouse plasmacytoma-associated variant (6;15) translocation breakpoint. EMBO J. 1985;4:3183–8.

    PubMed  CAS  Google Scholar 

  11. López-Nieva P, Santos J, Fernández-Piqueras J. Altered expression ofNotch1, Notch2, c-myc andIkaros in γ-radiation induced mouse thymic lymphomas. Carcinogenesis, 2004;25:1299–304.

    Article  PubMed  CAS  Google Scholar 

  12. Stewart M, Cameron E, Campbell M, et al. conditional expression and oncogenicity ofc-myc linked to a CD2 gene dominant control region. Int J Cancer. 1993;53:1023–30.

    Article  PubMed  CAS  Google Scholar 

  13. Higuchi R, Fockler C, Dollinger G, Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology. 1993;11:1026–30.

    Article  PubMed  CAS  Google Scholar 

  14. Mocellin S, Rossi CR, Pilati P, Nitti D, Marincola FM. Quantitative real-time PCR: a powerful ally in cancer research. Trends Mol Med. 2003;9:189–95.

    Article  PubMed  CAS  Google Scholar 

  15. Santos J, Pérez de Castro I, Herranz M, Pellicer A, Fernández-Piqueras J. Allelic losses on chromosome 4 suggest the existence of a candidate tumour suppressor gene region of about 0.6 cM in gamma-radiation-induced mouse primary thymic lymphomas. Oncogene. 1996;12:669–76.

    PubMed  CAS  Google Scholar 

  16. Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques. 1997;22:130–9.

    PubMed  CAS  Google Scholar 

  17. Santos J, Herranz M, Pérez de Castro I, Pellicer A, Fernández-Piqueras J. A new candidate site for a tumour suppressor gene involved in mouse thymic lymphomagenesis is located on the distal part of chromosome 4. Oncogene. 1998;17:925–9.

    Article  PubMed  CAS  Google Scholar 

  18. Meléndez B, Santos J, Fernández-Piqueras J. Loss of heterozygosity at the proximal-mid part of mouse chromosome 4 defines two novel tumour suppressor gene loci in T-cell lymphomas. Oncogene. 1999;18:4166–9.

    Article  PubMed  Google Scholar 

  19. Bieche I, Olivi M, Champeme MH, Vidaud D, Lidereau R, Vidaud M. Novel approach to quantitative polymerase chain reaction using real-time detection: application to the detection of gene amplification in breast cancer. Int J Cancer. 1998;78:661–6.

    Article  PubMed  CAS  Google Scholar 

  20. Rochlitz CF, Herrmann R, de Kant E. Over-expression and amplification ofc-myc during progression of human colorectal cancer. Oncology, 1996;53:448–54.

    Article  PubMed  CAS  Google Scholar 

  21. Herms J, Neidt I, Luscher B, et al.c-myc expression in medulloblastoma and its pronostic value. Int J Cancer. 2000;89: 395–402.

    Article  PubMed  CAS  Google Scholar 

  22. Rothberg PG, Erisman MD, Diehl RE, Rovigatti UG, Astrin SM. Structure and expression of the oncogenec-myc in fresh tumour material from patients with hematopoietic malignancies. Mol Cell Biol. 1984;4:1096–103.

    PubMed  CAS  Google Scholar 

  23. Green DR, Evan GI. A matter of life and death. Cancer Cell. 2002;1:19–30

    Article  PubMed  CAS  Google Scholar 

  24. Gray JW, Collins C. Genome changes and gene expression in human solid tumours. Carcinogenesis. 2000;21:443–52.

    Article  PubMed  CAS  Google Scholar 

  25. Marinkovic D, Marinkovic T, Mahr B, Hess J, Wirth T. Reversible lymphomagenesis in conditionallyc-myc expressing mice. Int J Cancer. 2004;20:336–42.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, J., Vaquero, C., Reyes, J. et al. Lack of correlation between DNA copy number and mRNA expression levels ofc-myc in γ-radiation-induced mouse thymic lymphomas by using quantitative real-time PCR. Clin Transl Oncol 8, 349–353 (2006). https://doi.org/10.1007/s12094-006-0181-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-006-0181-y

Key words

Navigation