Skip to main content
Log in

Anti-bacterial and Anti-biofilm Effects of Equol on Yersinia enterocolitica

  • Original research article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Yersinia enterocolitica has clinical significance due to its etiological role in yersiniosis and gastroenteritis. This study was designed to assess anti-bacterial and anti-biofilm effects of equol on Y. enterocolitica via phenotypic and genetic analyses. To determine its anti-bacterial activity, minimum inhibitory concentrations (MICs) of equol against clinically isolated Y. enterocolitica strains were analyzed. Subsequently, it was confirmed that the sub-MIC90 value of equol could inhibit biofilm formation and reduce preformed biofilm. Furthermore, it was found that equol could reduce the expression of biofilm-related (hmsT) gene in Y. enterocolitica. This study also demonstrated that equol not only reduced levels of bacterial motility, but also decreased the expression of a motility-related (flhDC) gene in Y. enterocolitica. XTT [2,3-bis (2-metoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction analysis revealed that equol attenuated cellular metabolic activities in Y. enterocolitica biofilm. Additionally, changes in biomass and cell density in equol-treated biofilms were visualized using a confocal laser scanning microscope. In conclusion, this study suggests that equol is a potential anti-bacterial and anti-biofilm agent to treat Y. enterocolitica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CLSM:

Confocal laser scanning microscopy

DMSO:

Dimethyl sulfoxide

LB:

Luria–Bertani broth

MBEC:

Minimal biofilm eradication concentration

MBIC:

Minimal biofilm inhibition concentration

MIC:

Minimum inhibitory concentrations

qPCR:

Quantitative polymerase chain reaction

PI:

Propidium iodide

References

  1. Chen PE, Cook C, Stewart AC, Nagarajan N, Sommer DD et al (2010) Genomic characterization of the Yersinia genus. Genome Biol 11:R1. https://doi.org/10.1186/gb-2010-11-1-r1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zińczuk J, Wojskowicz P, Kiśluk J, Fil D, Kemona A et al (2015) Mesenteric lymphadenitis caused by Yersinia enterocolitica. Prz Gastroenterol 10:118–121. https://doi.org/10.5114/pg.2014.47504

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schiemann DA (1989) Yersinia enterocolitica and Yersinia pseudotuberculosis. Foodborne bacterial pathogens 601–672.

  4. Fukushima H, Gomyoda M, Aleksic S (1998) Genetic variation of Yersinia enterocolitica serotype O: 9 strains detected in samples from western and eastern countries. Zentralbl Bakteriol 288:167–174

    Article  CAS  Google Scholar 

  5. Leon-Velarde CG, Happonen L, Pajunen M, Leskinen K, Kropinski AM et al (2016) Yersinia enterocolitica-specific infection by bacteriophages TG1 and ϕR1-RT is dependent on temperature-regulated expression of the phage host receptor OmpF. Appl Environ Microbiol 82:5340–5353. https://doi.org/10.1128/AEM.01594-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Le Guern AS, Martin L, Savin C, Carniel E (2016) Yersiniosis in France: overview and potential sources of infection. Int J Infect Dis 46:1–7. https://doi.org/10.1016/j.ijid.2016.03.008

    Article  PubMed  Google Scholar 

  7. Sabina Y, Rahman A, Ray RC, Montet D (2011) Yersinia enterocolitica: mode of transmission, molecular insights of virulence, and pathogenesis of infection. J Pathog 2011:429069. https://doi.org/10.4061/2011/429069

    Article  PubMed  PubMed Central  Google Scholar 

  8. O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79. https://doi.org/10.1146/annurev.micro.54.1.49

    Article  CAS  PubMed  Google Scholar 

  9. Meng J, Xu J, Chen J (2020) The role of osmoregulated periplasmic glucans in the biofilm antibiotic resistance of Yersinia enterocolitica. Microb Pathog 147:104284. https://doi.org/10.1016/j.micpath.2020.104284

    Article  CAS  PubMed  Google Scholar 

  10. Limoli DH, Jones CJ, Wozniak DJ (2015) Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.MB-0011-2014

    Article  PubMed  Google Scholar 

  11. Meng J, Bai J, Junhong Xu, Huang C, Chen J (2019) Differential regulation of physiological activities by RcsB and OmpR in Yersinia enterocolitica. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnz210

    Article  PubMed  Google Scholar 

  12. Wang H, Tay M, Palmer J, Flint S (2017) Biofilm formation of Yersinia enterocolitica and its persistence following treatment with different sanitation agents. Food Control 73:433–437. https://doi.org/10.1016/j.foodcont.2016.08.033

    Article  CAS  Google Scholar 

  13. Liaqat I, Mirza SA, Iqbal R, Ali NM, Saleem G et al (2018) Flagellar motility plays important role in biofilm formation of Bacillus cereus and Yersinia enterocolitica. Pak J Pharm Sci 31:2047–2052

    CAS  PubMed  Google Scholar 

  14. Fàbrega A, Vila J (2012) Yersinia enterocolitica: pathogenesis, virulence and antimicrobial resistance. Enferm Infecc Microbiol Clin 30:24–32. https://doi.org/10.1016/j.eimc.2011.07.017

    Article  PubMed  Google Scholar 

  15. Soutourina OA, Bertin PN (2003) Regulation cascade of flagellar expression in gram-negative bacteria. FEMS Microbiol Rev 27:505–523. https://doi.org/10.1016/S0168-6445(03)00064-0

    Article  CAS  PubMed  Google Scholar 

  16. Fleitas Martínez O, Cardoso MH, Ribeiro SM, Franco OL (2019) Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition. Front Cell Infect Microbiol 9:74. https://doi.org/10.3389/fcimb.2019.00074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mostafa AA, Al-Askar AA, Almaary KS, Dawoud TM, Sholkamy EN et al (2018) Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J Biol Sci 25:361–366. https://doi.org/10.1016/j.sjbs.2017.02.004

    Article  PubMed  Google Scholar 

  18. Clavel T, Mapesa JO (2013) Phenolics in human nutrition: importance of the intestinal microbiome for isoflavone and lignan bioavailability. In: Ramawat KG, Mérillon J-M (eds) Natural products. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 2433–2463. https://doi.org/10.1007/978-3-642-22144-6_94

    Chapter  Google Scholar 

  19. Rowland I, Gibson G, Heinken A, Scott K, Swann J et al (2018) Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 57:1–24. https://doi.org/10.1007/s00394-017-1445-8

    Article  CAS  PubMed  Google Scholar 

  20. Mayo B, Vázquez L, Flórez AB (2019) Equol: a bacterial metabolite from the daidzein isoflavone and its presumed beneficial health effects. Nutrients 11:2231. https://doi.org/10.3390/nu11092231

    Article  CAS  PubMed Central  Google Scholar 

  21. Yang Z, Zhao Y, Yao Y, Li J, Wang W, Xiaonan W (2016) Equol induces mitochondria-dependent apoptosis in human gastric cancer cells via the sustained activation of ERK1/2 pathway. Mol Cells 39:742–749. https://doi.org/10.14348/molcells.2016.0162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hwang J, Wang J, Morazzoni P, Hodis HN, Sevanian A (2003) The phytoestrogen equol increases nitric oxide availability by inhibiting superoxide production: an antioxidant mechanism for cell-mediated LDL modification. Free Radic Biol Med 34:1271–1282. https://doi.org/10.1016/s0891-5849(03)00104-7

    Article  CAS  PubMed  Google Scholar 

  23. Choi EJ, Ahn WS, Bae SM (2008) Equol induces apoptosis through cytochrome c-mediated caspases cascade in human breast cancer MDA-MB-453 cells. Chem Biol Interact 177:7–11. https://doi.org/10.1016/j.cbi.2008.09.031

    Article  CAS  PubMed  Google Scholar 

  24. Subedi L, Ji E, Shin D, Jin J, Yeo JH et al (2017) Equol, a dietary daidzein gut metabolite attenuates microglial activation and potentiates neuroprotection in vitro. Nutrients 9:207. https://doi.org/10.3390/nu9030207

    Article  CAS  PubMed Central  Google Scholar 

  25. Kim HR, Eom YB (2021) Synergistic activity of equol and meropenem against carbapenem-resistant Escherichia coli. Antibiotics (Basel) 10:161. https://doi.org/10.3390/antibiotics10020161

    Article  CAS  Google Scholar 

  26. Kim HR, Eom YB (2021) Antifungal and anti-biofilm effects of 6-shogaol against Candida auris. J Appl Microbiol 130:1142–1153. https://doi.org/10.1111/jam.14870

    Article  CAS  PubMed  Google Scholar 

  27. Shin DS, Eom YB (2020) Antimicrobial and antibiofilm activities of Clostridium butyricum supernatant against Acinetobacter baumannii. Arch Microbiol 202:1059–1068. https://doi.org/10.1007/s00203-020-01823-0

    Article  CAS  PubMed  Google Scholar 

  28. Oh SK, Chang HJ, Chun HS, Kim HJ, Lee N (2015) Pomegranate (Punica granatum L.) peel extract inhibits quorum sensing and biofilm formation potential in Yersinia enterocolitica. Biotechnol Lett 43:357–366. https://doi.org/10.4014/mbl.1510.10004

    Article  Google Scholar 

  29. Meng J, Xu J, Huang C, Chen J (2020) Rcs phosphorelay responses to truncated lipopolysaccharide-induced cell envelope stress in Yersinia enterocolitica. Molecules 25:5718. https://doi.org/10.3390/molecules25235718

    Article  CAS  PubMed Central  Google Scholar 

  30. Stiefel P, Schmidt-Emrich S, Maniura-Weber K, Ren Q (2015) Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol 15:36. https://doi.org/10.1186/s12866-015-0376-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang X, Cui Z, Jin D, Tang L, Xia S et al (2009) Distribution of pathogenic Yersinia enterocolitica in China. Eur J Clin Microbiol Infect Dis 28:1237–1244. https://doi.org/10.1007/s10096-009-0773-x

    Article  CAS  PubMed  Google Scholar 

  32. McNally A, Cheasty T, Fearnley C, Dalziel RW, Paiba GA et al (2004) Comparison of the biotypes of Yersinia enterocolitica isolated from pigs, cattle and sheep at slaughter and from humans with yersiniosis in Great Britain during 1999–2000. Lett Appl Microbiol 39:103–108. https://doi.org/10.1111/j.1472-765X.2004.01548.x

    Article  CAS  PubMed  Google Scholar 

  33. Galindo CL, Rosenzweig JA, Kirtley ML, Chopra AK (2011) Pathogenesis of Y. enterocolitica and Y. pseudotuberculosis in human yersiniosis. J Pathog 2011:182051. https://doi.org/10.4061/2011/182051

    Article  PubMed  PubMed Central  Google Scholar 

  34. Capita R, Vicente-Velasco M, Rodríguez-Melcón C, García-Fernández C, Carballo J et al (2019) Effect of low doses of biocides on the antimicrobial resistance and the biofilms of Cronobacter sakazakii and Yersinia enterocolitica. Sci Rep 9:15905. https://doi.org/10.1038/s41598-019-51907-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zadernowska A, Chajęcka-Wierzchowska W (2017) Prevalence, biofilm formation and virulence markers of Salmonella sp. and Yersinia enterocolitica in food of animal origin in Poland. LWT 75:552–556. https://doi.org/10.1016/j.lwt.2016.10.007

    Article  CAS  Google Scholar 

  36. Ioannidis A, Kyratsa A, Ioannidou V, Bersimis S, Chatzipanagiotou S (2014) Detection of biofilm production of Yersinia enterocolitica strains isolated from infected children and comparative antimicrobial susceptibility of biofilm versus planktonic forms. Mol Diagn Ther 18:309–314. https://doi.org/10.1007/s40291-013-0080-1

    Article  CAS  PubMed  Google Scholar 

  37. Laosuwan K, Epasinghe DJ, Wu Z, Leung WK, Green DW, Jung HS (2018) Comparison of biofilm formation and migration of Streptococcus mutans on tooth roots and titanium miniscrews. Clin Exp Dent Res 4:40–47. https://doi.org/10.1002/cre2.101

    Article  PubMed  Google Scholar 

  38. Younis G, Mady M, Awad A (2019) Yersinia enterocolitica: prevalence, virulence, and antimicrobial resistance from retail and processed meat in Egypt. Vet World 12:1078–1084. https://doi.org/10.14202/vetworld.2019.1078-1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tanaka Y, Kimura S, Ishii Y, Tateda K (2019) Equol inhibits growth and spore formation of Clostridioides difficile. J Appl Microbiol 127:932–940. https://doi.org/10.1111/jam.14353

    Article  CAS  PubMed  Google Scholar 

  40. Lee JA, Chee HY (2010) In vitro antifungal activity of equol against Candida albicans. Mycobiology 38:328–330. https://doi.org/10.4489/MYCO.2010.38.4.328

    Article  PubMed  PubMed Central  Google Scholar 

  41. Haney EF, Trimble MJ, Cheng JT, Vallé Q, Hancock REW (2018) Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides. Biomolecules 8:29. https://doi.org/10.3390/biom8020029

    Article  CAS  PubMed Central  Google Scholar 

  42. Fernandes RA, Monteiro DR, Arias LS, Fernandes GL, Delbem AC et al (2016) Biofilm formation by Candida albicans and Streptococcus mutans in the presence of farnesol: a quantitative evaluation. Biofouling 32:329–338. https://doi.org/10.1080/08927014.2016.1144053

    Article  CAS  PubMed  Google Scholar 

  43. Kukleva LM, Eroshenko GA, Vidyaeva NA, Kutyrev VV (2011) Bacterial biofilm and peculiarities of its formation in plague agent and in other pathogenic Yersinia. Probl Osobo Opasnykh Infekts 110:5–11

    Article  Google Scholar 

  44. Chen S, Thompson KM, Francis MS (2016) Environmental regulation of Yersinia pathophysiology. Front Cell Infect Microbiol 6:25. https://doi.org/10.3389/fcimb.2016.00025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Young GM, Smith MJ, Minnich SA, Miller VL (1999) The Yersinia enterocolitica motility master regulatory operon, flhDC, is required for flagellin production, swimming motility, and swarming motility. J Bacteriol 181:2823–2833. https://doi.org/10.1128/JB.181.9.2823-2833.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. El Mouali Y, Kim H, Ahmad I, Brauner A, Liu Y et al (2017) Stand-Alone EAL domain proteins form a distinct subclass of EAL proteins involved in regulation of cell motility and biofilm formation in Enterobacteria. J Bacteriol 199:e00179-e217. https://doi.org/10.1128/JB.00179-17

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kim TJ, Young BM, Young GM (2008) Effect of flagellar mutations on Yersinia enterocolitica biofilm formation. Appl Environ Microbiol 74:5466–5474. https://doi.org/10.1128/AEM.00222-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245. https://doi.org/10.1016/j.biotechadv.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  49. Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 37:121–140. https://doi.org/10.3109/1040841X.2010.532479

    Article  CAS  PubMed  Google Scholar 

  50. Kalia VC, Wood TK, Kumar P (2014) Evolution of resistance to quorum-sensing inhibitors. Microb Ecol 68:13–23. https://doi.org/10.1007/s00248-013-0316-y

    Article  CAS  PubMed  Google Scholar 

  51. Huma N, Shankar P, Kushwah J, Bhushan A, Joshi J et al (2011) Diversity and polymorphism in AHL-lactonase gene (aiiA) of Bacillus. J Microbiol Biotechnol 21:1001–1011. https://doi.org/10.4014/jmb.1105.05056

    Article  CAS  PubMed  Google Scholar 

  52. Koul S, Prakash J, Mishra A, Kalia VC (2016) Potential emergence of multi-quorum sensing inhibitor resistant (MQSIR) bacteria. Indian J Microbiol 56:1–18. https://doi.org/10.1007/s12088-015-0558-0

    Article  CAS  PubMed  Google Scholar 

  53. Kalia VC, Patel S, Kang YC, Lee JK (2019) Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol Adv 37:68–90. https://doi.org/10.1016/j.biotechadv.2018.11.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a Soonchunhyang University research fund and a National Research Foundation of Korea (NRF) Grant [NRF-2020R1F1A1071977] funded by the Korean government (MSIT).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: H-RK, M-SH and Y-BE; Methodology: H-RK; Software: H-RK and M-SH; Validation: H-RK, M-SH and Y-BE.; Investigation: H-RK and M-SH; Resources: Y-BE; Data curation: H-RK and M-SH; Writing—original draft preparation: H-RK and M-SH; Writing—review and editing, H-RK and Y-BE.; Supervision: Y-BE.; Project administration: Y-BE.; Funding acquisition: Y-BE. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yong-Bin Eom.

Ethics declarations

Conflict of interest

All authors declare the absence of competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HR., Han, MS. & Eom, YB. Anti-bacterial and Anti-biofilm Effects of Equol on Yersinia enterocolitica. Indian J Microbiol 62, 401–410 (2022). https://doi.org/10.1007/s12088-022-01020-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-022-01020-1

Keywords

Navigation