Skip to main content

Advertisement

Log in

Efficient Editing of an Adenoviral Vector Genome with CRISPR/Cas9

  • Short communications
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Immunotherapy based on genetic modification of T cells has played an important role in the treatment of tumors and viral infections. Moreover, adenoviral vectors engineered with improved safety due to their inability to integrate into the host genome have been key in the clinical application of T cell therapy. However, the commonly used adenoviral vector Ad5 exhibits low efficiency of infection of human T cells and the details of the intracellular trafficking pathway of adenoviral vectors in human primary T cells remains unclear. Resolution of these issues will depend on successful modification of the adenoviral vector. To this end, here we describe the successful establishment of a simple and efficient method for editing adenoviral vectors in vitro using the CRISPR-Cas9 gene editing system to target the adenoviral fiber gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Fraietta JA, Nobles CL, Sammons MA, Lundh S, Carty SA, Reich TJ, Cogdill AP, Morrissette JJD, DeNizio JE, Reddy S, Hwang Y, Gohil M, Kulikovskaya I, Nazimuddin F, Gupta M, Chen F et al (2018) Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558:307–312. https://doi.org/10.1038/s41586-018-0178-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ruella M, Xu J, Barrett DM, Fraietta JA, Reich TJ, Ambrose DE, Klichinsky M, Shestova O, Patel PR, Kulikovskaya I, Nazimuddin F, Bhoj VG, Orlando EJ, Fry TJ, Bitter H, Maude SL et al (2018) Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat Med 24:1499–1503. https://doi.org/10.1038/s41591-018-0201-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. June CH, Blazar BR, Riley JL (2009) Engineering lymphocyte subsets: tools, trials and tribulations. Nat Rev Immunol 9:704–716. https://doi.org/10.1038/nri2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shayakhmetov DM, Papayannopoulou T, Stamatoyannopoulos G, Lieber A (2000) Efficient gene transfer into human CD34+ cells by a retargeted adenovirus vector. J Virol 74:2567–2583. https://doi.org/10.1128/jvi.74.6.2567-2583.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Flatt JW, Butcher SJ (2019) Adenovirus flow in host cell networks. Open Biol 9:190012. https://doi.org/10.1098/rsob.190012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schroers R, Hildebrandt Y, Hasenkamp J, Glass B, Lieber A, Wulf G, Piesche M (2004) Gene transfer into human T lymphocytes and natural killer cells by Ad5/F35 chimeric adenoviral vectors. Exp Hematol 32:536–546. https://doi.org/10.1016/j.exphem.2004.03.010

    Article  CAS  PubMed  Google Scholar 

  7. Wang I-H, Burckhardt JC, Yakimovich A, Greber FU (2018) Imaging, tracking and computational analyses of virus entry and egress with the cytoskeleton. Viruses 10:166. https://doi.org/10.3390/v10040166

    Article  CAS  PubMed Central  Google Scholar 

  8. Zhang W-F, Shao H-W, Feng-lin Wu, Xie X, Li Z-M, Bo H-B, Shen H, Wang T, Huang S-L (2016) Influence of cell physiological state on gene delivery to T lymphocytes by chimeric adenovirus Ad5F35. Sci Rep 6:22688. https://doi.org/10.1038/srep22688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bi Y, Sun L, Gao D, Ding C, Li Z, Li Y, Cun W, Li Q (2014) High-efficiency targeted editing of large viral genomes by RNA-guided nucleases. PLOS Pathog 10:e1004090. https://doi.org/10.1371/journal.ppat.1004090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ng P, Parks RJ, Cummings DT, Evelegh CM, Sankar U, Graham FL (1999) A high-efficiency Cre/loxP-based system for construction of adenoviral vectors. Hum Gene Ther 10:2667–2672. https://doi.org/10.1089/10430349950016708

    Article  CAS  PubMed  Google Scholar 

  12. Mocarski ES, Post LE, Roizman B (1980) Molecular engineering of the herpes simplex virus genome: insertion of a second L-S junction into the genome causes additional genome inversions. Cell 22:243–255. https://doi.org/10.1016/0092-8674(80)90172-5

    Article  CAS  PubMed  Google Scholar 

  13. Agarwalla PK, Aghi MK (2012) Oncolytic herpes simplex virus engineering and preparation. Methods Mol Biol 797:1–19. https://doi.org/10.1007/978-1-61779-340-0_1

    Article  CAS  PubMed  Google Scholar 

  14. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308. https://doi.org/10.1038/nprot.2013.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the National Natural Science Foundation of China (81703053, 21771042), the Guangdong Basic and Applied Basic Research Foundation (2018A030313860, 2020A1515010889, 2018A030313114), the Guangzhou Science and Technology Project (202002030477) and the a grant from the Innovative and Strong School Project of Guangdong Higher Education Institutions (2017KZDXM049, 2017KCXTD020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-wei Shao or Wen-feng Zhang.

Ethics declarations

Conflicts of interest

The authors have no financial conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Supplementary file2 (TIFF 1061 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Wang, H., Gong, Cy. et al. Efficient Editing of an Adenoviral Vector Genome with CRISPR/Cas9. Indian J Microbiol 61, 91–95 (2021). https://doi.org/10.1007/s12088-020-00905-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-020-00905-3

Keywords

Navigation