Skip to main content

Advertisement

Log in

Regulatory Role of ERG3 and Efg1 in Azoles-Resistant Strains of Candida albicans Isolated from Patients Diagnosed with Vulvovaginal Candidiasis

  • Original research article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Vulvovaginal candidiasis (VVC), caused by Candida albicans, affects women’s health and life. We aimed to explore the correlation between ERG3 as well as Efg1 mutation/overexpression and azoles-resistance, and the correlation between ERG3 and Efg1 mRNA expression in C. albicans. First, C. albicans was isolated from clinical VVC patients. ERG3 and Efg1 mutations were detected by polymerase chain reaction (PCR) and sequencing, and the expression levels of these two genes were also identified by qRT-PCR. Correlations between mutation/overexpression of ERG3/Efg1 and azoles-resistance as well as ERG3 and Efg1 mRNA expression were analyzed. Based on the ERG3 sequencing, the results showed that there were 2 missense mutation sites, 1 nonsense mutation site, and 4 silent mutation sites, while 1 missense mutation sites, 1 nonsense mutation site, and 12 silent mutation sites were found in Efg1. Furthermore, the mRNA levels of ERG3 gene in the strains sensitive to FCA, ITR or VRC were higher than those in the strains resistant to FCA, ITR, VRC (P < 0.05). While for the mRNA levels of Efg1, susceptible strains were lower than resistant strains. Besides, there was a significant linear negative correlation between ERG3 and Efg1 mRNA expression (r = − 0.614, P < 0.001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Elfeky DS, Gohar NM, El-Seidi EA, Ezzat MM, Aboelew SH (2016) Species identification and antifungal susceptibility pattern of Candida isolates in cases of vulvovaginal candidiasis. Alex J Med 52:269–277. https://doi.org/10.1016/j.ajme.2015

    Article  Google Scholar 

  2. Gharaei A, Erahimzadeh A, Khorashad ARS, Jorjani O, Jamshidi A et al (2015) Determination of prevalancy and species of vulvovaginal candidiasis and clinical findings correlation. J Gorgan Univ Med Sci 17:109–113

    Google Scholar 

  3. Matheson A, Mazza D (2017) Recurrent vulvovaginal candidiasis: a review of guideline recommendations. Aust N Z J Obstet Gynaecol. https://doi.org/10.1111/ajo.12592

    Article  PubMed  Google Scholar 

  4. Fan SR, Bai FY, Liao QP, Liu ZH, Li J et al (2008) Genotype distribution of Candida albicans strains associated with different conditions of vulvovaginal candidiasis, as revealed by microsatellite typing. Sex Transm Infect 84:103–106. https://doi.org/10.1136/sti.2007.025700

    Article  CAS  PubMed  Google Scholar 

  5. Cowen LE, Steinbach WJ (2008) Stress, drugs, and evolution: the role of cellular signaling in fungal drug resistance. Eukaryot Cell 7:747. https://doi.org/10.1128/EC.00041-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maurizio S, Brunella P, Cornelia LFR (2015) Antifungal drug resistance among Candida species: mechanisms and clinical impact. Mycoses 58:2–13. https://doi.org/10.1111/myc.12330

    Article  Google Scholar 

  7. Whaley SG, Berkow EL, Rybak JM, Nishimoto AT, Barker KS et al (2016) Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front Microbiol. https://doi.org/10.3389/fmicb.2016.02173

    Article  PubMed  Google Scholar 

  8. Sanglard D, Ischer F, Bille L (1998) Amino acid substitutions in the cytochrome P-450 lanosterol 14alpha-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrob Agents Chemother 42:241–253. https://doi.org/10.1097/00001813-199802000-00010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. White TC, Holleman S, Dy F, Mirels LF, Stevens DA (2002) Resistance mechanisms in clinical isolates of Candida albicans. Antimicrob Agents Chemother 46:1704–1713. https://doi.org/10.1128/AAC.46.6.1704-1713.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Perea S, López-Ribot JL, Kirkpatrick WR, Mcatee RK, Santillán RA et al (2001) Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 45:2676–2684

    Article  CAS  Google Scholar 

  11. Strzelczyk JK, Slemp-Migiel A, Rother M, Gołąbek K, Wiczkowski A (2013) Nucleotide substitutions in the Candida albicans ERG11 gene of azole-susceptible and azole-resistant clinical isolates. Acta Biochim Polon 60:547. https://doi.org/10.1016/B978-0-12-420067-8.00023-4

    Article  PubMed  Google Scholar 

  12. Feng W, Yang J, Xi Z, Qiao Z, Lv Y et al (2017) Mutations and/or over expressions of ERG4 and ERG11 genes in clinical azoles-resistant isolates of Candida albicans. Microbial Drug Resist (Larchmont, NY) 23:563–570. https://doi.org/10.1089/mdr.2016.0095

    Article  CAS  Google Scholar 

  13. Feng W, Yang J, Wang Y, Chen J, Xi Z et al (2016) ERG11 mutations and upregulation in clinical itraconazole-resistant isolates of Candida krusei. Can J Microbiol 62:938. https://doi.org/10.1139/cjm-2016-0055

    Article  CAS  PubMed  Google Scholar 

  14. Yang J, Feng W, Wang Y, Chen J, Xi Z et al (2016) Mutation and elevated expression of ERG5 gene in anti-fungal drugs of Candida albicans. China J Health Insp 4:542–545

    Google Scholar 

  15. Berkow EL, Manigaba K, Parker JE, Barker KS, Kelly SL et al (2015) Multidrug transporters and alterations in sterol biosynthesis contribute to azole antifungal resistance in Candida parapsilosis. Antimicrobial Agents Chemother 59:5942. https://doi.org/10.1128/AAC.01358-15

    Article  CAS  Google Scholar 

  16. Vale-Silva LA, Coste AT, Ischer F, Parker JE, Kelly SL et al (2012) Azole resistance by loss of function of the sterol Δ5,6-desaturase gene (ERG3) in Candida albicans does not necessarily decrease virulence. Antimicrob Agents Chemother 56:1960–1968. https://doi.org/10.1128/AAC.05720-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lotfali E, Ghajari A, Kordbacheh P, Zaini F, Mirhendi H et al (2017) Regulation of ERG3, ERG6, and ERG11 Genes in antifungal-resistant isolates of Candida parapsilosis. Iran Biomed J 21:275–281. https://doi.org/10.18869/acadpub.ibj.21.4.275

    Article  PubMed  PubMed Central  Google Scholar 

  18. Akins RA (2005) An update on antifungal targets and mechanisms of resistance in Candida albicans. Med Mycol 43:285–318. https://doi.org/10.1080/13693780500138971

    Article  CAS  PubMed  Google Scholar 

  19. Lo HJ, Wang JS, Lin CY, Chen CG, Hsiao TY, Hsu CT, Su CL, Fann MJ, Ching YT, Yang YL (2005) Efg1 involved in drug resistance by regulating the expression of ERG3 in Candida albicans. Antimicrob Agents Chemother 49:1213–1215. https://doi.org/10.1128/AAC.49.3.1213-1215.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Saputo S, Kumar A, Krysan DJ (2014) Efg1 directly regulates ACE2 expression to mediate cross talk between the cAMP/PKA and RAM pathways during Candida albicans morphogenesis. Eukaryot Cell 13:1169. https://doi.org/10.1128/EC.00148-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Su H-c, Cheng B, Shi X-m (2010) The difference of EFG1 and HGC1 expression between the myceial and yeast from of Candida albicans. Chin J Dermatol Vener Dis 24:304–306

    CAS  Google Scholar 

  22. Feng W, Yang J, Yang L, Li Q, Zhu X et al (2018) Research of Mrr1, Cap1 and MDR1 in Candida albicans resistant to azole medications. Experimental and Therapeutic Medicine 15:1217–1224. https://doi.org/10.3892/etm.2017.5518

    Article  CAS  PubMed  Google Scholar 

  23. Casalinuovo IA, Di FP, Garaci E (2004) Fluconazole resistance in Candida albicans: a review of mechanisms. Eur Rev Med Pharmacol Sci 8:69

    CAS  PubMed  Google Scholar 

  24. Florent M, Fabrice P, Claire L, Michel M, Patrice LP (2012) Amino acid substitutions in the Candida albicans sterol Δ5,6-desaturase (Erg3p) confer azole resistance: characterization of two novel mutants with impaired virulence. J Antimicrob Chemother 67:2131–2138. https://doi.org/10.1093/jac/dks186

    Article  CAS  Google Scholar 

  25. Sanglard D, Ischer F, Parkinson T, Falconer D, Bille J (2003) Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob Agents Chemother 47:2404–2412. https://doi.org/10.1128/aac.47.8.2404-2412.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Prasad T, Hameed S, Manoharlal R, Biswas S, Mukhopadhyay CK et al (2010) Morphogenic regulator EFG1 affects the drug susceptibilities of pathogenic Candida albicans. FEMS Yeast Res 10:587–596. https://doi.org/10.1111/j.1567-1364.20

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Research Project supported by Shanxi Province, China (Program No. 201701D121171), Research and Development Key Projects of Shanxi Province (Program No. 201603D321063), Research Project Supported by Health and Family Planning Commission of Shanxi Province, China (Program No. 201601050). Meanwhile, the project was supported by the Science & Technology Innovation Foundation for Univerisities in Shanxi Province, China (Program No. 20161118).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenli Feng or Jing Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Wenli Feng and Jing Yang should be regard as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, W., Yang, J., Xi, Z. et al. Regulatory Role of ERG3 and Efg1 in Azoles-Resistant Strains of Candida albicans Isolated from Patients Diagnosed with Vulvovaginal Candidiasis. Indian J Microbiol 59, 514–524 (2019). https://doi.org/10.1007/s12088-019-00833-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-019-00833-x

Keywords

Navigation