Skip to main content
Log in

RNA-Binding Domain is Necessary for PprM Function in Response to the Extreme Environmental Stress in Deinococcus radiodurans

  • Original Research Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Deinococcus radiodurans was considered as one of the most radiation-resistant organisms on Earth because of its strong resistance to the damaging factors of both DNA and protein, including ionizing radiation, ultraviolet radiation, oxidants, and desiccation. PprM, as a bacterial cold shock protein homolog, was involved in the radiation resistance and oxidative stress response of D. radiodurans, but its potential mechanisms are poorly expounded. In this study, we found that PprM was highly conserved with the RNA-binding domain in Deinococcus genus through performing phylogenic analysis. Moreover, the paper presents the analysis on the tolerance of environmental stresses both in the wild-type and the pprM/pprM RBD mutant strains, demonstrating that pprM and RNA-binding domain disruptant strain were with higher sensitivity than the wild-type strain to cold stress, mitomycin C, UV radiation, and hydrogen peroxide. In the following step, the recombinant PprM was purified, with the finding that PprM was bound to the 5’-untranslated region of its own mRNA by gel mobility shift assay in vitro. With all these findings taken into consideration, it was suggested that PprM act as a cold shock protein and its RNA-binding domain may be involved in reaction to the extreme environmental stress in D. radiodurans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Slade D, Radman M (2011) Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev 75:133–191. doi:10.1128/MMBR.00015-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cox MM, Battista JR (2005) Deinococcus radiodurans—the consummate survivor. Nat Rev Microbiol 3:882–892. doi:10.1038/nrmicro1264

    Article  CAS  PubMed  Google Scholar 

  3. Ishino Y, Narumi I (2015) DNA repair in hyperthermophilic and hyperradioresistant microorganisms. Curr Opin Microbiol 25:103–112. doi:10.1016/j.mib.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  4. Tsai CH, Liao R, Chou B, Contreras LM (2015) Transcriptional analysis of Deinococcus radiodurans reveals novel small RNAs that are differentially expressed under ionizing radiation. Appl Environ Microbiol 81:1754–1764. doi:10.1128/AEM.03709-14

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lange CC, Wackett LP, Minton KW, Daly MJ (1998) Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat Biotechnol 16:929–933. doi:10.1038/nbt1098-929

    Article  CAS  PubMed  Google Scholar 

  6. Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW, Koonin EV, Daly MJ (2001) Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65:44–79. doi:10.1128/MMBR.65.1.44-79.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Munteanu A-C, Uivarosi V, Andries A (2015) Recent progress in understanding the molecular mechanisms of radioresistance in Deinococcus bacteria. Extremophiles 19:707–719. doi:10.1007/s00792-015-0759-9

    Article  CAS  PubMed  Google Scholar 

  8. Frenkiel-Krispin D, Minsky A (2006) Nucleoid organization and the maintenance of DNA integrity in E. coli, B. subtilis and D. radiodurans. J Struct Biol 156:311–319. doi:10.1016/j.jsb.2006.05.014

    Article  CAS  PubMed  Google Scholar 

  9. Hua Y, Narumi I, Gao G, Tian B, Satoh K, Kitayama S, Shen B (2003) PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans. Biochem Biophys Res Commun 306:354–360. doi:10.1016/s0006-291x(03)00965-3

    Article  CAS  PubMed  Google Scholar 

  10. Lu H, Gao G, Xu G, Fan L, Yin L, Shen B, Hua Y (2009) Deinococcus radiodurans PprI switches on DNA damage response and cellular survival networks after radiation damage. Mol Cell Proteomics 8:481–494. doi:10.1074/mcp.M800123-MCP200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ohba H, Satoh K, Sghaier H, Yanagisawa T, Narumi I (2009) Identification of PprM: a modulator of the PprI-dependent DNA damage response in Deinococcus radiodurans. Extremophiles 13:471–479. doi:10.1007/s00792-009-0232-8

    Article  CAS  PubMed  Google Scholar 

  12. Jeong SW, Seo HS, Kim MK, Choi JI, Lim HM, Lim S (2016) PprM is necessary for up-regulation of katE1, encoding the major catalase of Deinococcus radiodurans, under unstressed culture conditions. J Microbiol 54:426–431. doi:10.1007/s12275-016-6175-8

    Article  PubMed  Google Scholar 

  13. Airo A, Chan SL, Martinez Z, Platt MO, Trent JD (2004) Heat shock and cold shock in Deinococcus radiodurans. Cell Biochem Biophys 40:277–288. doi:10.1385/CBB:40:3:277

    Article  CAS  PubMed  Google Scholar 

  14. Pelicic V, Reyrat JM, Gicquel B (1996) Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria. J Bacteriol 178:1197–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  CAS  PubMed  Google Scholar 

  16. Adachi M, Hirayama H, Shimizu R, Satoh K, Narumi I, Kuroki R (2014) Interaction of double-stranded DNA with polymerized PprA protein from Deinococcus radiodurans. Protein Sci 23:1349–1358. doi:10.1002/pro.2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hall BG (2013) Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 30:1229–1235. doi:10.1093/molbev/mst012

    Article  CAS  PubMed  Google Scholar 

  19. Mojib N, Andersen DT, Bej AK (2011) Structure and function of a cold shock domain fold protein, CspD, in Janthinobacterium sp. Ant5-2 from East Antarctica. FEMS Microbiol Lett 319:106–114. doi:10.1111/j.1574-6968.2011.02269.x

    Article  CAS  PubMed  Google Scholar 

  20. White O, Eisen JA, Heidelberg JF, Hickey EK, Peterson JD, Dodson RJ, Haft DH, Gwinn ML, Nelson WC, Richardson DL, Moffat KS, Qin H, Jiang L, Pamphile W, Crosby M, Shen M, Vamathevan JJ, Lam P, McDonald L, Utterback T, Zalewski C, Makarova KS, Aravind L, Daly MJ, Minton KW, Fleischmann RD, Ketchum KA, Nelson KE, Salzberg S, Smith HO, Venter JC, Fraser CM (1999) Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286:1571–1577. doi:10.1126/science.286.5444.1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mitta M, Fang L, Inouye M (1997) Deletion analysis of cspA of Escherichia coli: requirement of the AT-rich UP element for cspA transcription and the downstream box in the coding region for its cold shock induction. Mol Microbiol 26:321–335

    Article  CAS  PubMed  Google Scholar 

  22. Devigne A, Mersaoui S, Bouthier-de-la-Tour C, Sommer S, Servant P (2013) The PprA protein is required for accurate cell division of γ-irradiated Deinococcus radiodurans bacteria. DNA Repair (Amst) 12:265–272. doi:10.1016/j.dnarep.2013.01.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the National Natural Science Foundation of China (Grant No. 81272993).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuya He.

Ethics declarations

Conflicts of interest

All authors declare no conflicts of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1265 kb)

Supplementary material 2 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Ma, Y., Yang, J. et al. RNA-Binding Domain is Necessary for PprM Function in Response to the Extreme Environmental Stress in Deinococcus radiodurans . Indian J Microbiol 57, 492–498 (2017). https://doi.org/10.1007/s12088-017-0684-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-017-0684-y

Keywords

Navigation