Skip to main content
Log in

Genome Mining and Predictive Functional Profiling of Acidophilic Rhizobacterium Pseudomonas fluorescens Pt14

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas fluorescens Pt14 is a non-pathogenic and acidophilic bacterium isolated from acidic soil (pH 4.65). Genome sequencing of strain Pt14 was performed using Single Molecule Real Time (SMRT) sequencing to get insights into unique existence of this strain in acidic environment. Complete genome sequence of this strain revealed a chromosome of 5,841,722 bp having 5354 CDSs and 88 RNAs. Phylogenomic reconstruction based on 16S rRNA gene, Average Nucleotide Identity (ANI) values and marker proteins revealed that strain Pt14 shared a common clade with P. fluorescens strain A506 and strain SS101. ANI value of strain Pt14 in relation to strain A506 was found 99.23% demonstrating a very close sub-species association at genome level. Further, orthology determination among these three phylogenetic neighbors revealed 4726 core proteins. Functional analysis elucidated significantly higher abundance of sulphur metabolism (>1×) which could be one of the reasons for the survival of strain Pt14 under acidic conditions (pH 4.65). Acidophilic bacteria have capability to oxidize sulphur into sulphuric acid which in turn can make the soil acidic and genome-wide analysis of P. fluorescens Pt14 demonstrated that this strain contributes towards making the soil acidic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Spiers AJ, Buckling A, Rainey PB (2000) The causes of Pseudomonas diversity. Microbiology 146:2345–2350. doi:10.1099/00221287-146-10-2345

    Article  CAS  PubMed  Google Scholar 

  2. Prakash O, Kumari K, Lal R (2007) Pseudomonas delhiensis sp. nov., from a fly ash dumping site of a thermal powerplant. Int J Syst Evol Microbiol 57:527–531. doi:10.1099/ijs.0.64456-0

    Article  CAS  PubMed  Google Scholar 

  3. Gupta SK, Kumari R, Prakash O, Lal R (2008) Pseudomonas panipatensis sp. nov., isolated from an oil-contaminated site. Int J Syst Evol Microbiol 58:1339–1345. doi:10.1099/ijs.0.65401-0

    Article  CAS  PubMed  Google Scholar 

  4. Grewal S, Vakhlu J, Gupta V, Sangwan N, Kohli P, Nayyar N, Rani P, Sance SS, Lal R (2014) Draft genome sequence of Pseudomonas sp. strain JMM, a sediment-hosted environmental isolate. Genome Announc 2:000879-14. doi:10.1128/genomeA.00879-14

    Article  Google Scholar 

  5. Sharma A, Sangwan N, Negi V, Kohli P, Khurana JP, Rao DLN, Lal R (2015) Pan-genome dynamics of Pseudomonas gene complements enriched across hexachlorocyclohexane dumpsite. BMC Genom 16:313. doi:10.1186/s12864-015-1488-2

    Article  Google Scholar 

  6. Korshunova TY, Ramírez-Bahena MH, Chetverikov SP, Igual JM, Peix Á, Loginov O (2016) Pseudomonas turukhanskensis sp. nov., isolated from oil-contaminated soils. Int J Syst Evol Microbiol 66:4657–4664. doi:10.1099/ijsem.0.001406

    Article  PubMed  Google Scholar 

  7. Lomholt JA, Poulsen K, Kilian M (2001) Epidemic population structure of Pseudomonas aeruginosa: evidence for a clone that is pathogenic to the eye and that has a distinct combination of virulence factors. Infect Immun 69:6284–6295. doi:10.1128/IAI.69.10.6284-6295.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kamath KS, Pascovici D, Penesyan A, Goel A, Venkatakrishnan V, Paulsen IT, Packer NH, Molloy MP (2016) Pseudomonas aeruginosa cell membrane protein expression from phenotypically diverse cystic fibrosis isolates demonstrates host-specific adaptations. J Proteome Res 15:2152–2163. doi:10.1021/acs.jproteome.6b00058

    Article  CAS  PubMed  Google Scholar 

  9. Young JM (2010) Taxonomy of Pseudomonas syringae. J Plant Pathol 92:S5–S14. doi:10.4454/jpp.v92i1sup.2501

    Google Scholar 

  10. Arrebola E, Cazorla FM, Durán VE, Rivera E, Olea F, Codina JC, Pérez-García A, Vicente A (2003) Mangotoxin: a novel antimetabolite toxin produced by Pseudomonas syringae inhibiting ornithine/arginine biosynthesis. Physiol Mol Plant Pathol 63:117–127. doi:10.1128/AEM.03007-12

    Article  CAS  Google Scholar 

  11. Nowell RW, Laue BE, Sharp PM, Green S (2016) Comparative genomics reveals genes significantly associated with woody hosts in the plant pathogen Pseudomonas syringae. Mol Plant Pathol 17:1409–1424. doi:10.1111/mpp.12423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garrido-Sanz D, Meier-Kolthoff JP, Göker M, Martín M, Rivilla R, Redondo-Nieto M (2016) Genomic and genetic diversity within the Pseudomonas fluorescens complex. PLoS ONE 11:e0150183. doi:10.1371/journal.pone.0150183

    Article  PubMed  PubMed Central  Google Scholar 

  13. Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451. doi:10.1128/MMBR.00012-07.20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barahona E, Navazo A, Martínez-Granero F, Zea-Bonilla T, Pérez-Jiménez RM, Martín M, Rivilla R (2011) Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens. Appl Environ Microbiol 77:5412–5419. doi:10.1128/AEM.00320-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vanitha S, Ramjegathesh R (2014) Biocontrol Potential of Pseudomonas fluorescens against coleus root rot disease. J Plant Pathol Microb 5:216. doi:10.4172/2157-7471.1000216

    Google Scholar 

  16. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326. doi:10.1093/nar/8.19.4321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Okonechnikov K, Golosova O, Fursov M (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167. doi:10.1093/bioinformatics/bts091

    Article  CAS  PubMed  Google Scholar 

  18. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9:75. doi:10.1186/1471-2164-9-75

    Article  Google Scholar 

  19. Moriya Y, Itoh M, Okuda S, Yoshizawa A, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185. doi:10.1093/nar/gkm321

    Article  PubMed  PubMed Central  Google Scholar 

  20. Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264. doi:10.1128/JB.187.18.6258-6264.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–W57. doi:10.1093/nar/gkm360

    Article  PubMed  PubMed Central  Google Scholar 

  22. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M (2006) ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34:D32–D36. doi:10.1093/nar/gkj014

    Article  CAS  PubMed  Google Scholar 

  23. Zhou Y, Liang Y, Lynch K, Dennis JJ, Wishart DS (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39:W347–W352. doi:10.1093/nar/gkr485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kerepesi C, Bánky D, Grolmusz V (2014) AmphoraNet: the webserver implementation of the AMPHORA2 metagenomic workflow suite. Gene 533:538–540. doi:10.1016/j.gene.2013

    Article  CAS  PubMed  Google Scholar 

  25. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. doi:10.1093/nar/gkm160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Laslett D, Canback B (2004) ARAGORN, a program for the detection of transfer RNA and transfer-messenger RNA genes in nucleotide sequences. Nucleic Acids Res 32:11–16. doi:10.1093/nar/gkf459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Loper JE, Hassan KA, Mavrodi DV, Davis EW II, Lim CK, Shaffer BT, Elbourne LD, Stockwell VO, Hartney SL, Breakwell K, Henkels MD, Tetu SG, Rangel LI, Kidarsa TA, Wilson NL, van de Mortel JE, Song C, Blumhagen R, Radune D, Hostetler JB, Brinkac LM, Durkin AS, Kluepfel DA, Wechter WP, Anderson AJ, Kim YC, Pierson LS, Pierson EA, Lindow SE, Kobayashi DY, Raaijmakers JM, Weller DM, Thomashow LS, Allen AE, Paulsen IT (2012) Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8:e1002784. doi:10.1371/journal.pgen.1002784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Silby MW, Cerdeño-Tárraga AM, Vernikos GS, Giddens SR, Jackson RW, Preston GM, Zhang XX, Moon CD, Gehrig SM, Godfrey SA, Knight CG, Malone JG, Robinson Z, Spiers AJ, Harris S, Challis GL, Yaxley AM, Harris D, Seeger K, Murphy L, Rutter S, Squares R, Quail MA, Saunders E, Mavromatis K, Brettin TS, Bentley SD, Hothersall J, Stephens E, Thomas CM, Parkhill J, Levy SB, Rainey PB, Thomson NR (2009) Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genom Biol 10:R51. doi:10.1186/gb-2009-10-5-r51

    Article  Google Scholar 

  29. Kimbrel JA, Givan SA, Halgren AB, Creason AL, Mills DI, Banowetz GM, Armstrong DJ, Chang JH (2010) An improved, high-quality draft genome sequence of the germination-arrest factor-producing Pseudomonas fluorescens WH6. BMC Genom 11:522. doi:10.1186/1471-2164-11-522

    Article  Google Scholar 

  30. Stabler RA, Negus D, Pain A, Taylor PW (2013) Draft genome sequences of Pseudomonas fluorescens BS2 and Pusillimonas noertemannii BS8, soil bacteria that cooperate to degrade the poly-γ-d-glutamic acid anthrax capsule. Genome Announc 1:e00057-12. doi:10.1128/genomeA.00057-12

    Article  PubMed  PubMed Central  Google Scholar 

  31. Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FS (2016) Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res 44:D646–D653. doi:10.1093/nar/gkv1227

    Article  PubMed  Google Scholar 

  32. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  33. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism, vol 3. Academic Press, New York, pp 21–132

    Chapter  Google Scholar 

  35. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. doi:10.1093/oxfordjournals.molbev.a040454

    CAS  PubMed  Google Scholar 

  36. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868. doi:10.1073/pnas.95.25.14863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rho M, Tang H, Ye Y (2010) FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res 38:e191. doi:10.1093/nar/gkq747

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomic visualization in a Web browser. BMC Bioinformtics 12:385. doi:10.1186/1471-2105-12-385

    Article  Google Scholar 

  39. Wang Y, Coleman-Derr D, Chen G, Gu YQ (2015) OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 43:W78–W84. doi:10.1093/nar/gkv487

    Article  PubMed  PubMed Central  Google Scholar 

  40. Johnson DB, Hallsberg KB (2008) Carbon, iron and sulfur metabolism in acidophilic micro-organisms. Adv Microb Physiol 54:201–255. doi:10.1016/S0065-2911(08)00003-9

    Article  Google Scholar 

  41. Oren A (2010) Acidophiles. In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net. doi:10.1002/9780470015902.a0000336.pub2

  42. Zhang X, Liu X, Liang Y, Fan F, Zhang X, Yin H (2016) Metabolic diversity and adaptive mechanisms of iron and/or sulfur oxidizing autotrophic acidophiles in extremely acidic environments. Environ Microbiol Rep 8:738–751. doi:10.1111/1758-2229.12435

    Article  Google Scholar 

  43. Chen SY, Lin JG (2004) Bioleaching of heavy metals from livestock sludge by indigenous sulfur-oxidizing bacteria: effects of sludge solids concentration. Chemosphere 54:283–289. doi:10.1016/j.chemosphere.2003.08.009

    Article  CAS  PubMed  Google Scholar 

  44. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, DeBoy RT (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA 102:13950–13955. doi:10.1073/pnas.0506758102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao L, Li H, Zhu Z, Wakefield MR, Fang Y, Ye Y (2017) Genomic sequencing of a strain of Acinetobacter baumannii and potential mechanisms to antibiotics resistance. Infect Genet Evol 50:20–24. doi:10.1016/j.meegid.2017.02.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funds from Government of India under project from Department of Biotechnology (DBT), All India Network Project on Soil Biodiversity-Biofertilizers Indian Council of Agricultural Research (ICAR) and National Bureau of Agriculturally Important Microorganisms (NBAIM). PR, NKM and AS gratefully acknowledge ICAR, DBT and NBAIM respectively for providing research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rup Lal.

Additional information

Nucleotide sequence Accession Number: The complete genome sequence of Pseudomonas fluorescens strain Pt14 has been deposited at NCBI under Genbank Accession Number CP017296.1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, P., Mahato, N.K., Sharma, A. et al. Genome Mining and Predictive Functional Profiling of Acidophilic Rhizobacterium Pseudomonas fluorescens Pt14. Indian J Microbiol 57, 155–161 (2017). https://doi.org/10.1007/s12088-017-0648-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-017-0648-2

Keywords

Navigation